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ABSTRACT

We propose an adaptive estimation method for the spatio-

temporal covariance matrix of sea clutter. The motivation is

to enable adaptive detection approaches that rely on accurate

estimation of this matrix. The method involves vectorization

of the equations for the dynamical system model governing

the temporal evolution of the clutter matrix followed by a

multiple particle filtering approach to deal with the high di-

mensionality of the formulation. The estimated sea clutter

covariance matrix is applied to the problem of detection of

a small target in heavy clutter; effectiveness is demonstrated

via simulations.

Index Terms— Sea clutter estimation, waveform schedul-

ing, waveform diversity, space-time covariance matrix, radar

scattering function

1. INTRODUCTION

The next generation of active sensing systems will offer pro-

found increases in agility — particularly at the transmitter,

where opportunities to exert real-time control over a prolif-

eration of degrees of freedom are rapidly developing [1]. In

radar, waveform agility presents new possibilities for sens-

ing rapidly changing scenes. The well-studied problem of

detecting a moving target in heavy sea clutter presents a par-

ticularly challenging situation where waveform agility, cou-

pled with adaptive algorithms encompassing waveform de-

sign, scheduling and receiver processing, may hold poten-

tial for substantial performance gains. Exploitation of wave-

form agility for target detection in the presence of sea clutter

has been demonstrated through the use of short-time “snap-

shot” estimation of the spatio-temporal covariance matrix of

the clutter [2, 3]. In this paper, we seek to extend this cir-

cle of ideas into situations in which a dynamical model of

rapidly changing parameters of a scene, including both target

and clutter states, is available to allow leveraging of prior pa-

rameter estimates. The goal with regard to clutter is to use

prior information in conjunction with the dynamical model to
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obtain a more accurate estimate of the space-time covariance

matrix in each sensing epoch, thereby enabling increased fi-

delity in waveform design and receiver processing.

In this paper, we propose a method to adaptively estimate

the space-time covariance matrix for rapidly varying radar

scenes. The method introduces a formulation of the space-

time representation of the clutter scene in the scattering func-

tion domain. This formulation is vectorized to obtain a conve-

nient dynamical system description for the temporally evolv-

ing clutter model. The dimensionality of the resulting dynam-

ical system is very high in practical scenarios, so we use the

multiple particle filter sequential Monte Carlo method [4] to

sequentially estimate the dynamic scene. In this step, struc-

ture of the dynamical equations is capitalized upon to reduce

dimensionality.

The paper is organized as follows. In Section 2, we pro-

vide the system model for the radar scene representation. In

Section 3, the multiple particle filtering method is described

and used to develop our space-time covariance matrix estima-

tion method. Simulation results illustrating performance of

the approach are presented in Section 4.

2. RADAR SCENE SYSTEM REPRESENTATION

2.1. Space-time covariance matrix characterization

Consider a radar operating at a pulse repetition frequency

(PRF) of fs Hz that transmits a burst of K pulses in a dwell.

The return from each burst is sampled at a rate fb Hz to yield a

sequence y[m, k] = y(m ∆Tb, k), m = m0, m1, · · · , mMn−1,
k = 0, 1, · · · , K − 1, where ∆Tb = 1/fb is the fast sampling

interval, m0 is the lowest range bin in the validation gate at

time step n, and the validation gate at dwell n consists of Mn

range bins. Let the complex reflectivity of the aggregate scat-

terers on the sea surface at pulse k and range bin m be given

by x[m, k], which could represent sea clutter or targets. Then,

the radar return at the kth pulse is modeled by

y[m, k] =

N−1
∑

i=0

x[m − i, k]s[i] + v[m, k] (1)

where v[m, k] is white Gaussian noise. Note that we have

assumed that the same signal s[n], n = 0, 1, · · · , N − 1 is
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transmitted repeatedly throughout each burst.

We let the signal matrix P be an Mn by Nv matrix, where

Nv = Mn + N − 1, with the signal sequence s[n] beginning

at the pth element in the pth row, p = 1, 2, · · · , Mn:

P =











s[0] s[1] · · · s[N − 1] · · · 0
0 s[0] s[1] · · · s[N − 1] · · ·
...

...
...

... · · ·
...

0 0 · · · · · · s[N − 2] s[N − 1]











We also define Bn to be an Nv × K matrix consisting of the

complex reflectivities x[m, k], m = m0, m1, · · · ,
mMn−1+N−1, k = 0, 1, · · · , K − 1, with range (fast time or

delay) increasing down the columns and transmitted pulses

(slow time) increasing across the rows. For notational con-

venience in the following development, we will assume K is

odd.

We can then write the observation matrix as

Yn = PBn + Vn (2)

where Yn is the observation matrix with elements defined in

(1) and Vn is the noise matrix at time n.

We denote by B̃ = vec(B) the stacked columns of ma-

trix B to form a vector of dimension KNv. The covariance

matrix of the reflectivity vector B̃n provides both space and

time covariance information. Our objective is to estimate

ΣB̃,n = E[B̃nB̃H
n ], the space-time covariance matrix of the

scatterers given the sequence of observations Ỹ1, Ỹ2, · · · , Ỹn.

Here, H denotes Hermitian transpose and E[·] is the expecta-

tion operator.

2.2. Scattering function characterization

To estimate the space-time covariance matrix ΣB̃,n, we first

define a scattering matrix An whose elements are obtained by

taking the short-time Fourier transform of the elements of Bn

in the slow-time direction; specifically,

An[m, l] =
1√
K

K−1
∑

k=0

Bn[m, k]W kl

where W = exp(−j2π/K) and l ∈ [−K−1
2 , · · · , K−1

2 ].
Then,

An = BnD (3)

where D is the discrete Fourier transform matrix. Thus, An

contains the range-Doppler description of the complex reflec-

tivities in Bn.

We assume a near-constant velocity model for each of

the scatterers, including the target. With this assumption, the

vectorized scattering matrix Ãn evolves according to the dy-

namic equation

Ãn = FÃn−1 + W̃n (4)

where W̃n is zero-mean complex Gaussian noise with covari-

ance Qn. The matrix F incorporates the movement of the

scatterers between dwells and populates the range-Doppler

cells that move into the validation gate.

The structure of the matrix F follows from underlying

physical considerations. Note that the first (K−1)/2 columns

of matrix An represent negative Doppler shifts, the center col-

umn represents zero Doppler, and the last (K−1)/2 columns

represent positive Doppler shifts. These correspond to scat-

terers moving away from the sensor, not moving, and moving

toward the sensor, respectively. We will assume that the range

bin size and Doppler resolution are such that the scatterer in

the lth column of An, l = −K−1
2 , · · · , 0, · · · , K−1

2 , moves a

total of l bins between dwells. In each column of An, some

scatterers will move out of the validation gate while others

will move in. The latter effect requires us to populate the

empty range-Doppler cells. This is accomplished by using an

exponentially weighted sum of the complex reflectivities in

the immediate neighborhood of these cells. The KNv×KNv

matrix F is block-diagonal, with its kth Nv × Nv block, Fk ,

given by

Fk =





























e−|k|α e−(|k|+1)α · · · · · · e−(Nv+|k|−1)α

e−(|k|−1)α · · · · · · · · · e−(Nv+|k|−2)α

...
... · · ·

...
...

e−α e−2α · · · · · · e−Nvα

1 0 · · · · · · 0
0 1 0 · · · 0
...

... · · ·
...

...

0 · · · 1 · · · 0





























when k = −(K − 1)/2, · · · ,−1, and

Fk =

























0 · · · 0 1 · · · 0
... · · · · · · · · · · · ·

...

0 · · · · · · · · · 0 1

e−Nvα e−(Nv−1)α · · · · · · · · · e−α

e−(Nv+1)α e−Nvα · · · · · · · · · e−2α

... · · · · · · · · · · · ·
...

e−(Nv+k−1)α e−(Nv+k−2)α · · · · · · · · · e−kα

























when k = 1, · · · , (K−1)/2. At k = 0, there is no movement

of scatterers and the corresponding block is simply INv
, the

identity matrix of dimension Nv .

The update of the filtering formulation is given by the ob-

servation equation. Specifically, from (2),

Ỹn = P̄ B̃n + Ṽn

where P̄ = IK ⊗ P is the Kronecker product of IK and P .

According to (2) and (3),

Yn = PAnD−1 + Vn (5)
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Using the property vec(GJL) = (LH ⊗ G)J̃ where G, J, L
are three arbitrary matrices [5], (5) can be vectorized as

Ỹn = (D−H ⊗ P )Ãn + Ṽn

= P̌ Ãn + Ṽn

with P̌ = D ⊗ P .

The dynamical system model can be derived from (4):

ΣÃ,n = E[ÃnÃH
n ] = FΣÃ,n−1F

H + Qn (6)

The observation model is then

ΣỸ ,n = P̌ΣÃ,nP̌H + Rn (7)

Using (7), we can obtain p(Ỹn|ΣÃ,n) in order to update the

filter. Note that Qn in (6) and Rn in (7) are assumed to be

Wishart distributed.

Our goal is to estimate the space-time covariance matrix

ΣB̃,n of the scatterers. By vectorizing (3),

B̃n = (D ⊗ INv
)Ãn

Then,

ΣB̃,n = (D ⊗ INv
)ΣÃ,n(DH ⊗ INv

)

Thus, ΣB̃,n can be obtained by the estimation of ΣÃ,n.

3. PROPOSED ESTIMATION METHOD

3.1. State dimensionality

After vectorization, the dimensionality of Σ̃Ã,n is given by

Ξ = (KNv)
2. The value of Ξ can be quite large, even if

we consider a small number of pulses. For example, if we

use K = 9 pulses and Mn = 10 range bins, then even if

we reduce the signal length to N = 6, we obtain Nv =
Mn + N − 1 = 15 and thus Ξ = 18, 225. Thus, the state

dynamic formulation suffers from high dimensionality that

prevents direct implementation of particle filtering estimation

techniques. We therefore apply the multiple particle filtering

method [4] that we summarize next.

3.2. Multiple particle filtering

Particle filtering is a sequential Monte Carlo method that is

based on sampling to approximate probability density func-

tions. Particle filtering is often an attractive alternative to

Kalman filtering when the system equations are nonlinear or

the noise is non-Gaussian [6, 7]. However, in many prob-

lems, the dimensionality of the state space may be very large,

as occurs when using the covariance matrix as the state in

this paper. In this situation, a huge set of particles is needed

to provide sufficient support and the computational complex-

ity of the algorithm becomes prohibitive. As discussed in [4],

multiple particle filtering can be used to overcome this dimen-

sionality problem.

Suppose the dynamic and measurement models of a sys-

tem can be expressed as:

αn = fn(αn−1, ωn−1)

βn = hn(αn, γn)

where αn is the dα-dimensional system state vector at time

step n, fn and hn are (possibly nonlinear) functions, and ωn

and γn are noise vectors. Using the multiple particle filtering

approach [4], αn is divided into L subvectors:

αn =









α1,n

α2,n

· · ·
αL,n









Each αl,n, l = 1, 2, · · · , L, is estimated using a different par-

ticle filter. The weights at time step n are updated by:

w
(i)
l,n = w

(i)
l,n−1

p(βn|α(i)
l,n, α̃−l,n)p(α

(i)
l,n|α

(i)
l,n−1, α̂−l,n−1)

πl(α
(i)
l,n|α

(i)
l,n−1, α̂−l,n−1, βn)

where l indexes the individual particle filters, l = 1, 2, · · · , L,

i is the index for the ith particle, i = 1, 2, · · · , I and α̃−l,n

and α̂−l,n−1 are the predicted and estimated values of all the

states at time step n except of αl,n, respectively.

3.3. Multiple particle filtering of scattering function co-

variance matrix

After vectorization, (6) can be expressed as

Σ̃Ã,n = (F ⊗ F )Σ̃Ã,n−1 + Q̃n

where the matrix F⊗F is block diagonal, F⊗F = diag[F1⊗
F · · · FK ⊗ F ], and Fk is defined in Section 2.2. The struc-

ture of F⊗F leads to a natural decomposition of the dynamics

of the state vector into K independent subsystems:

Σ̃Ã,n =
[

ΛT
1,n, ΛT

2,n, . . . , ΛT
K,n

]T

where each vector Λk,n, k = 1, 2, · · · , K, has dimension

KN2
v . It is appropriate, then, to invoke the multiple parti-

cle filter method with L = K particle filters applied simul-

taneously, one on each of these K subsystems. For the kth

subsystem, the estimation of this segment of the current state

is obtained using the dynamic and measurement models

Λk,n = (Fk ⊗ F )Λk,n−1 + Vk,n

Σ̃Ỹ ,n = (P̌ ⊗ P̌ )Σ̃Ã,n + R̃n (8)

The weight for the ith particle is updated according to

p(ΣỸ ,n|Λi
k,nΛ̃i

−k,n)p(Λ
(i)
k,n|Λ

(i)
k,n−1Λ̂−k,n−1)

πk(Λ
(i)
k,n|Λ

(i)
k,n−1, Λ̂−k,n−1, Σ̃Ỹ ,n)
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where

Λ̃−k,n = [Λ̂T
1,n, · · · , Λ̂T

k−1,n, Λ̂T
k+1,n, · · · , Λ̂T

k,n]T

Λ̂T
j,n =

Ms
∑

i=1

w
(i)
j,n−1Λ

(i)
j,n, j 6= k

The observation then used has the complex Gaussian distrib-

ution with zero-mean and covariance matrix Σ
(i)

Ỹ ,n
.

4. SIMULATION

To demonstrate the effectiveness of the estimation method of

the space-time covariance matrix, we will investigate the per-

formance of detecting a moving target in heavy sea clutter.

Our simulation model consists of a constant-velocity tar-

get that is observed by a single sensor in the presence of simu-

lated sea clutter. Sea clutter is generated using the compound-

Gaussian model described in [8]. The range bin size and Dop-

pler resolution are chosen such that from one dwell to another,

the scatterer in the lth column, l = −K−1
2 , · · · , 0, · · · , K−1

2 ,

of the scattering function moves l bins. Monte Carlo simula-

tions are used to obtain the space-time covariance matrix of

reflectivities matrix, which generated the simulated observa-

tions. A total of K = 9 pulses are transmitted in each dwell.

The validation gate size Mn is chosen to be 11. The wave-

form transmitted is chosen to be a linear frequency-modulated

(LFM) chirp with signal length N = 6. Using our method, the

space-time covariance matrix of sea clutter can be estimated.

Target returns at different pulses and range bins are added

to the observations, and we assume that the target is moving

with a constant velocity. The amplitudes of the target returns

are sampled from a zero-mean, complex Gaussian process

with variance σ2, which is assumed known and determined

by the specified SCR values. The general likelihood ratio test

(GLRT) detector [9] is then applied to the observations based

on the estimates of the space-time covariance matrix.

The detection performance is shown in Figure 1: as the

SCR increases, the detection performance is improved. The

performance of the target detection suggests the effectiveness

and correctness of the estimation of the space-time covariance

matrix of heavy sea clutter, though further comparative eval-

uation is needed.

5. CONCLUSION

We have proposed an adaptive estimation method for the space-

time covariance matrix of sea clutter to support the applica-

tion of adaptive detection approaches that rely on accurate

estimation of this matrix. The method involves vectorization

of the equations for the dynamical system model governing

the temporal evolution of the clutter matrix followed by a

multiple particle filtering approach to deal with the high di-

mensionality on the formulation. The estimated sea clutter

covariance matrix is then applied to the problem of detection
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Fig. 1. Receiver operating characteristic curves for a GLRT

detector operating at various SCR values (given in dB).

of a small target in heavy clutter. The effectiveness of this

approach is demonstrated via simulations.

Ultimately, dynamic estimation approaches of this kind

are expected to play important roles in the context of waveform-

agile radars where the ability to propagate information about

clutter characteristics from dwell to dwell supports optimal

design/scheduling of transmitted waveforms.

6. REFERENCES

[1] D. Cochran, “Waveform-agile sensing: Opportunities and chal-

lenges,” in IEEE Int. Conf. on Acoustics, Speech, and Signal

Processing, April 2005, pp. 887–880.

[2] B. Friedlander, “A subspace method for space time adaptive

processing,” IEEE Trans. on Signal Processing, vol. 53, pp. 74–

82, January 2005.

[3] S. P. Sira, D. Cochran, A. Papandreou-Suppappola, D. Morrell,

W. Moran, S. Howard, and R. Calderbank, “Adaptive waveform

design for improved detection of low-RCS targets in heavy sea

clutter,” IEEE Journal on Selected Topics in Signal Proc., pp.

56–66, June 2007.

[4] P. M. Djuric, T. Lu, and M. F. Bugallo, “Multiple particle fi-

lering,” in IEEE Int. Conf. on Acoustics, Speech, and Signal

Processing, June 2007, pp. 1181–1184.

[5] J. R. Magnus and H. Neudecker, Eds., Matrix Differential Cal-

culus with Applications in Statistics and Econometrics, Wiley,

1999.

[6] A. Doucet, N. de Freitas, and N. J. Gordon, Eds., Sequential

Monte Carlo Methods in Practice, Springer, 2001.

[7] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp,

“A tutorial on particle filters for online nonlinear/non-Gaussian

Bayesian tracking,” IEEE Trans. on Signal Processing, vol. 50,

pp. 174–188, Feb. 2002.

[8] K. D. Ward, C. Baker, and S. Watts, “Maritime surveillance

radar, Part I: Radar scattering from the ocean surface,” in IEE

Proceedings F: Communications, Radar and Signal Processing,

1990, vol. 137, pp. 51–62.

[9] S. M. Kay, Fundamentals of Statistical Signal Processing: De-

tection Theory, vol. 2, Prentice-Hall, 1993.

12


