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ABSTRACT tiple particle filter sequential Monte Carlo method [3] te se
We propose an estimation method for the space-time Coq_uennally est!mate the _dynqm|c scene. The spgmal S.‘"‘“C‘!J
f the dynamical equations is used to reduce dimensionality

variance matrlx of sea clutter to support the application o he effectiveness of our method is demonstrated by detgctin
waveform-agile sensing procedures that rely on accurate es

L : ) : ._a moving target in simulated sea clutter and in real sea data
timation of this matrix. The method exploits the special

: . . collected by DSTO INGARA radar.
structure of the vectorized states of the scattering foncti

. : The paper is organized as follows. In Section 2, we pro-
for the dynamical system model governing the temporal evo-. :
. . . : vide the system model for the radar scene representation. In
lution of the clutter matrix followed by a multiple particle

filtering approach to estimate the covariance matrix andl deaSeCtlon 3, the multiple particle filtering method is desedb

with the high dimensionality on the formulation. The ef- and used to develop our space-time covariance matrix estima

fectiveness of the method is demonstrated by estimating tf{'on method. - Simulation results illustrating performarde

scattering function covariance matrix of both simulated se fe approach are presented in Section 4.
clutter data and real sea clutter data from DSTO INGARA
radar; and detecting a small moving target embedded in the 2. RADAR SCENE SYSTEM REPRESENTATION

clutter. ] ]
) ) ) ~ 2.1. Scattering function
Index Terms— Space-time covariance matrix, scattering

function, sea clutter Consider a radar operating at a pulse repetition frequency
(PRF) of f4 Hz that transmits a burst df pulses in a dwell.
The return from each burst is sampled at a rafeHz to
1. INTRODUCTION yield a sequencg[m, k],m = mo,m1, -+ ,mp, -1,k =
In radar signal processing applications, detection of aingpv 0,1, --- , K — 1, and the validation gate at dwellconsists of
target in heavy sea clutter is a well-known and challengingV/,, range bins. Let the complex reflectivity of the aggregate
problem. Accurate estimation of the space-time covariancscatterers on the sea surface at pulssnd range binn be
matrix of sea clutter is a key ingredient in several possiblgiven byz|m, k|. DefineB,, to be anV,, x K matrix consist-
mechanism for improving detection of small SCR targets. Aling of the complex reflectivities[m, k] with range {ast time
though approaches to this estimation problem under slowlgr delay) increasing down the columns and transmitted pulses
varying conditions have been proposed [1, 2], situations irfslow time) increasing across the rows, which is given by:
which the radar scene varies quickly present significantadd
tional difficulties. [0, mo] o K —1,m]
In this work, we consider a rather realistic scenario where [0, ma] . a[K —1,m]
; o ; Bn = . .
the clutter is fast changing instead of slow changing where
the effect of Doppler is excluded. Our method introduces
a formulation of the space-time representation of the etutt
scene in the spreading function domain; this includes the ef et b,, = veq B,,) be the stacked columns of matr, to
fect of range as well as Doppler changes on the transmittefdrm a vector of dimensiofi N,,. The covariance matrix of
signal. The dimensionality of the vectorized dynamicalsysthe reflectivity vectom,, provides both space and time co-
tem is very high in practical scenarios, so we use the mulyariance information. Our objective is to estimalg ,, =
“This work was parlly supported under MURI Grant No. AFOSR E[b,bZ], the space-time covariance matrix of the scatterers,

FA9550-05-1-0443 and by the DARPA Waveforms for Active Segsro- WhereH denotes Hermitian transpose anfd ks the expecta-
gram under NRL grant N00173-06-1-G006. tion operator.
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Using continuous time representation, the spreading func- To set up the matrixt’, note that the firs{ K — 1)/2
tion A(r,v) of a system underdoing time shift and fre- columns of matrixA4,, represent negative Doppler shifts,
guency shiftv is the Fourier transform (FT) of the system the center column represents zero Doppler, and the last

time-varying impulse response. Specifically, (K — 1)/2 columns represent positive Doppler shifts. These
correspond to scatterers moving away from the sensor, not
A(r,v) = /h(t,r)e‘j?’”’tdt (1) moving, and moving toward the sensor, respectively. In
each column of4,,, some scatterers will move out of the

Thus, due to discretization, the elements of mattjx which validation gate while others will move in. The latter ef-
is called scattering function, are obtained by taking thersh ~ fect requires us to populate treenpty range-Doppler cells.
time Fourier transform of (STFT) the elements®f in the ~ This is accomplished by using an exponentially weighted

slow-time direction (Corresponding ton (1)) Specifica”y, sum of the Complex reflectivities in the immediate neigh'
borhood of these cells. As definedl, is a KN, x KN,

An = BpD (2)  block-diagonal matrix, withFy, (N, x N,) presenting théth
) i , . block,k = —(K —-1)/2,...,—-1,0,1,..., (K —1)/2. When
whereD is the discrete Fourier transform matrix, givenby ;. _ (K —1)/2,...,~1, F} is given by:
1 o1 1 roolk|—1a—|k|a k|— —(Ny+|k|—1)a 7
L L plkl=lg-lkla . (2lkl=1 _ || 4 1)g~(Nu+lK-D)
1 W-—"=2 1 ... W= . . .
D=_—_ , : : :
VK : : e . g Moo
W_(K—l)z(K—l) 1 (K—l)z(K—l) 1 0 ,
andW = exp(—j2n/K). Thus, A, contains the range- 0
Doppler description of the complex reflectivities i), with : 0

the zero Doppler in the middle of each row.
whenk =1,..., (K —1)/2, the corresponding block is given

2.2. Observation model by:
Assume that the same signgh|,n = 0,1,--- N — 1 is 0
transmitted repeatedly throughout each burst. Then, therra ) )
return at thecth pulse is modeled bym, k] = Zf:;‘ol x[m— : : 0
n, k]s[n] + v[m, k], wherev[m, k] is white Gaussian noise. 0 1 ,
For notational convenience, we assufiés odd. e v - e
The observation can be written in a matrix manner as fol- : : :
lows. Let the signal matri¥’ be aniM,, by N, matrix, where (21— k4 1).e—(Nv+k—1)a : 2k_,le_ka
N, = M,, + N — 1, with the signal sequencgn] beginning - o -
at thepth element in theth row,p = 1,2,--- | M,,. Then, and whenk = 0, there is no movement of scatterers and the
corresponding block is simpliy, . The relationship between
Yo =PB, +Vy 3) matrix 4,, and B,, and the evolvement aofi,, is shown in

whereY, is the M, x K observation matrix with elements "'9"€ 1.

ylm, k] andV,, is the M,, x K noise matrix at timex with ) ) )
elementss[m, k]. 2.4. Dynamic and observation models of the scattering

function covariance matrix

2.3. Dynamic model According to (2) and (3)Y,, = PA,D~! 4+ V,,. Using the

HRroperty ve¢GJL) = (L¥ ® G)j whereG, J, L are three
arbitrary matrices anjl= vedJ) [4], the observation can be
vectorized as

We assume a near-constant velocity model for each of t
scatterers, including the target. With this assumptiomytt-
torized scattering matrix,, = veq 4,,) evolves according to

the dynamic equation yon = (D% ®P)a,+v,=Pa,+v, (5)

a, =Fa, 1 +w, (4)  with y, = veqY,) andP = D ® P. Then, (4) and (5)
_give the original dynamic and observation models, respec-

wherew, is zero-mean, complex Gaussian noise with covarig ey - By taking covariance, The dynamical system model
ance(@.,,. The matrixF' incorporates the movement of the can be further described as:

scatterers between dwells and populates the range-Doppler
cells that move into the validation gate. San=Ea,all| = FE,, 1 F¥ +Q,, (6)



pulse B, An Doppler

Suppose the dynamic and measurement models of a sys-
om] | HK-1m] | —=> x[mﬁyf% ...... X["‘MKT_

tem can be expressed as;, = fn(ap—1,w,—1) @andg,, =
hn(an,7,,), Wherea, is the dn-dimensional system state
LN vector at time step, f,, andh,, are (possibly nonlinear) func-
tions, andw,, and~y,, are noise vectors. Using the multiple
particle filtering approach in [3]e,, is divided into L sub-
vectors,a, = [of,, o3, - af ]7. Eachay,, | =
1,2,---, L, is estimated using a different particle filter. The
weights at time step are updated by:

range
range

e
dom, g e ak-am, )| = | xim S xim. £

moving backward

et (i) _  (3) p(/an|al(,zf)z7 d_lm‘)p(al,n'al,znfl’ d_lan_l)
In = Win_1 ; ; N
" " m(al(?llal(z,l, &_in-1,8,)

wherel indexes the individual particle filters = 1,2, - - - | L,
Lo _I__,,,,_KZ‘_ i is the index for theth particle,s = 1,2,--- , I anda_;
andéa_; ,—1 are the predicted and estimated values of all the
states at time step except ofey; ,,, respectively.

moving forward

positive Doppler shift

3.2. Multiple patrticle filtering for the estimation of scat-
Fig. 1. Relationship between matri&,, and B,, and the evo- tering function covariance matrix

lution of 4,,. . .
To take the advantage of Bayesian techniques to solve the sys

tem, we vectorize the dynamic and observation models in (6)
where(@,, is the covariance matrix of,,. The observation and (7) as our proposed models:

model is then - < ~
Z:a.,n = (F® F)za,nfl + Qna (8)
Syn=PZanP” + Ry, (7 Xyn = (P@P)Zan+Ra, 9
whereR,, is the covariance matrix of,,. Using (7), we can where 2., = veqX.,), Xy, = ved=,,), Q, =

obtainp(y,|Xa.») in order to update the filter. Note th@t,  vedQ,) andR,, = veqR,,). After the vectorization, the

in (6) andR,, in (7) are assumed to be Wishart distributeddimensionality ofs,, ,, is given by= = (K'N,)2. The value

to describe the covariance matrix of multinormal sampgs  of = can be quite large, even if we consider a small number of

andv,,. pulses. For example, if we ugé = 9 pulses and/,, = 10
Although the objective is to estimate the space-time corange bins, then even if we reduce the signal lengtii te 6,

variance matrixy, ,, of the scatterers, it is obvious that, from we obtainN,, = M,, + N — 1 = 15 and thusE = 18,225.

(2),B, = A, D~ ! =1y,-A, D1, and by vecterizatiob,, = Then, the state dynamic formulation suffers from high di-

(D®Iy,)a,, thenXy , = (DRIy,)Za (D @1y, ),which  mensionality that prevents direct implementation of jieti

meansXy, ,, can be expressed in terms¥f, ,,. filtering and Kalman filter estimation techniques, even & th
transformations are linear. We therefore apply the muatipl
3. PROPOSED ESTIMATION METHOD particle filtering method [3] that we summarize in Section
' 3.1

3.1. Multiple particle filtering In (8), the evolution matri¥” ® F' is block diagonal,

Particle filtering is a sequential Monte Carlo method that is heF 0 a 0

based on sampling to approximate probability density func- o p _ 0 FReF - 0

tions. Particle filtering is often an attractive alternatito

Kalman filtering when the system equations are nonlinear or 0 0 o FkQF

the noise is non-Gaussian 5, 6]. However, in many problemsandFk is defined in Section 2.3. The structurefo® F' leads

the dimensionality of the state space may be Igrg_e such as {0 a natural decomposition of the dynamics of the state vecto
our case, where the state space dimensionality is very IarqﬁtoK independent subsystems:

since the covariance matrix in (6) is the state. In this sibna

a huge set of particles is needed to provide sufficient suppor S [ AT AT AL 7T
. . . a,n — [ 1,n 2,ny cc 2 4iYKn }
and the computational complexity of the algorithm becomes
prohibitive. As discussed in [3], multiple particle filtag can ~ where each vectoAy ,, £ = 1,2,---, K, has dimension

be used to overcome this dimensionality problem. K NZ. Itis appropriate, then, to invoke the multiple particle



filter method withL. = K particle filters applied simultane-
ously, one on each of thedé subsystems. For thigh sub-
system, the estimation of this segment of the current state i
obtained using the dynamic and measurement models

Ak.,n (Fk ® F)Ak.,nfl + Vk,n

Sym (P® P)Zan+ Ry (10)

The weight for theth particle is updated according to

Probability of Detection

W) e Pl An A kDAL AL, (A1) % |
; ) Wk(AI(g’L,)n|Al(cZ)nfl’ A_gn—1, Ey,n) oi' ‘ ‘ ‘ \=:- SCR=-66B
0 0.05 0.1 0.15 0.2 0.25 0.3
Where Aikyn _ [Ain’ o 71/\\-:_17717 A:+1,n7 o ’Ai:n]T Probability of False Alarm
and Aan =M wl A j # k. The observation,

h particle filter, has a complex Gaussian Fig. 2. Receiver operating characteristic curves for a GLRT
detector operating at various SCR values (given in dB).

that is used in thét
distribution with zero-mean and covariance makix.,.

4. DEMONSTRATION OF EFFECTIVENESS 1999. The transmitted signal was an LFM chirp with band-

width 96 MHz and A/D sampling ratd00 MHz. The car-

Tod trate the effecti fth timati thod o. . .
0 demonstrate the etiectiveness ot fhe estimaton metho ?|erfrequency|59.375 GHz, a pulse widtt8 us and PRFE00

the space-time covariance matrix, we will investigate tee p ,HZ The peak power is kW. Wind speed isi3 m/s. The

formance of detecting a moving target in heavy sea clutter. ace-time covariance matri is estimated using our pezpos
The simulation will be executed on both simulated and reaf” ' varl X1 ' using ourp

. method based on the real data, which is then used in the de-
sea clutter data. In both scenarios, a totakbof= 9 pulses tection procedure
are transmitted in each dwell. The validation gate dizgis P )

chosen to bd 1. The waveform transmitted is chosen to beretut?]sdﬁ;ns?‘:g\?i;e t?aer e:tevﬁl[\;]egef;ng;nlirvrglitg?di'n\?ge tﬁgd
an LFM chirp with signal lengtllv = 6. Accordingly,L = 9 g arg y

particle filters are running simultaneously wiih particles raw d"’?ta- Based on th‘? estimated covariance matrix, a GLRT

for each. deteptmn is. then appl_|ed. Note th_at, the clu_tter strength i
obtained using the estimated covariance matrix.

) ) The receiver operating characteristic curves are shown in

4.1. Using simulated sea clutter data Figure 3 with different SCR values. The performance is rea-

Our simulation model consists of a constant-velocity targeSonably notas good as the results got from simulated sea clut

that is observed by a single sensor in the presence of simigr.
lated sea clutter. Sea clutter is generated using the conalbou
Gaussian model described in [7R00 Monte Carlo simu-
lations are used to obtain the space-time covariance matrix
of reflectivities, which generated the simulated obseovesti
Then, using our method, the space-time covariance matrix of
sea clutter can be estimated.

Target returns at different pulses and range bins are added
to the observations, and we assume that the target is moving
with a constant velocity. The amplitudes of the target meur
are sampled from a zero-mean, complex Gaussian process

0.9r

08f _~— e
0.7
0.6~

0.5

Probability of Detection

with variances?, which is assumed known and determined il |
by the specified SCR values and clutter energy. The GLRT o C sch on )|

. .
0.2 0.3 0.4 0.5
Probability of False Alarm

detector [8] is then applied to the observations based on the o1
estimates of the space-time covariance matrix.

The detection performance is shown in Figure 2.

Fig. 3. Receiver operating characteristic curves for a GLRT
detector operating at various SCR values (given in dB) using
We further apply our method to the real dataset which waseal data collected by DSTO INGARA radar.

collected by DSTO INGARA radar in Darwin, Australia in

4.2. Using real sea clutter data



5. CONCLUSION

We proposed a sea clutter space-time covariance matrix esti
mation method using the following two steps. We first vec-
torize the dynamic system equations to yield a structurleen t
state matrix. Then we use that structure in a multiple partic
filtering approach to reduce the high dimensionality in tre f
mulation. Simulations based on both simulated and real sea
clutter data have been undertaken to demonstrate the effec-
tiveness of our method. Note that the proposed dynamic esti-
mation is particularly important in the context of wavefarm
agile radars where estimation of the clutter charactessti

one dwell can be used in the design of the transmitted wave-
form in the next dwell.
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