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ABSTRACT

We propose an estimation method for the space-time co-
variance matrix of sea clutter to support the application of
waveform-agile sensing procedures that rely on accurate es-
timation of this matrix. The method exploits the special
structure of the vectorized states of the scattering function
for the dynamical system model governing the temporal evo-
lution of the clutter matrix followed by a multiple particle
filtering approach to estimate the covariance matrix and deal
with the high dimensionality on the formulation. The ef-
fectiveness of the method is demonstrated by estimating the
scattering function covariance matrix of both simulated sea
clutter data and real sea clutter data from DSTO INGARA
radar; and detecting a small moving target embedded in the
clutter.

Index Terms— Space-time covariance matrix, scattering
function, sea clutter

1. INTRODUCTION

In radar signal processing applications, detection of a moving
target in heavy sea clutter is a well-known and challenging
problem. Accurate estimation of the space-time covariance
matrix of sea clutter is a key ingredient in several possible
mechanism for improving detection of small SCR targets. Al-
though approaches to this estimation problem under slowly
varying conditions have been proposed [1, 2], situations in
which the radar scene varies quickly present significant addi-
tional difficulties.

In this work, we consider a rather realistic scenario where
the clutter is fast changing instead of slow changing where
the effect of Doppler is excluded. Our method introduces
a formulation of the space-time representation of the clutter
scene in the spreading function domain; this includes the ef-
fect of range as well as Doppler changes on the transmitted
signal. The dimensionality of the vectorized dynamical sys-
tem is very high in practical scenarios, so we use the mul-
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tiple particle filter sequential Monte Carlo method [3] to se-
quentially estimate the dynamic scene. The special structure
of the dynamical equations is used to reduce dimensionality.
The effectiveness of our method is demonstrated by detecting
a moving target in simulated sea clutter and in real sea data
collected by DSTO INGARA radar.

The paper is organized as follows. In Section 2, we pro-
vide the system model for the radar scene representation. In
Section 3, the multiple particle filtering method is described
and used to develop our space-time covariance matrix estima-
tion method. Simulation results illustrating performanceof
the approach are presented in Section 4.

2. RADAR SCENE SYSTEM REPRESENTATION

2.1. Scattering function

Consider a radar operating at a pulse repetition frequency
(PRF) offs Hz that transmits a burst ofK pulses in a dwell.
The return from each burst is sampled at a ratefb Hz to
yield a sequencey[m, k], m = m0, m1, · · · , mMn−1, k =
0, 1, · · · , K −1, and the validation gate at dwelln consists of
Mn range bins. Let the complex reflectivity of the aggregate
scatterers on the sea surface at pulsek and range binm be
given byx[m, k]. DefineBn to be anNv ×K matrix consist-
ing of the complex reflectivitiesx[m, k] with range (fast time
or delay) increasing down the columns and transmitted pulses
(slow time) increasing across the rows, which is given by:

Bn =











x[0, m0] . . . x[K − 1, m0]
x[0, m1] . . . x[K − 1, m1]
...

...
...

x[0, mMn+N−2] . . . x[K − 1, mMn+N−2]











.

Let bn = vec(Bn) be the stacked columns of matrixBn to
form a vector of dimensionKNv. The covariance matrix of
the reflectivity vectorbn provides both space and time co-
variance information. Our objective is to estimateΣb,n =
E[bnbH

n ], the space-time covariance matrix of the scatterers,
whereH denotes Hermitian transpose and E[·] is the expecta-
tion operator.



Using continuous time representation, the spreading func-
tion A(τ, ν) of a system underdoing time shiftτ and fre-
quency shiftν is the Fourier transform (FT) of the system
time-varying impulse response. Specifically,

A(τ, ν) =

∫

h(t, τ)e−j2πνtdt (1)

Thus, due to discretization, the elements of matrixAn, which
is called scattering function, are obtained by taking the short-
time Fourier transform of (STFT) the elements ofBn in the
slow-time direction (corresponding tot in (1)). Specifically,

An = BnD (2)

whereD is the discrete Fourier transform matrix, given by

D =
1√
K













1 . . . 1 . . . 1
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(K−1)
2
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W− (K−1)(K−1)
2 . . . 1 . . . W
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,

and W = exp(−j2π/K). Thus, An contains the range-
Doppler description of the complex reflectivities inBn with
the zero Doppler in the middle of each row.

2.2. Observation model

Assume that the same signals[n], n = 0, 1, · · · , N − 1 is
transmitted repeatedly throughout each burst. Then, the radar
return at thekth pulse is modeled byy[m, k] =

∑N−1
n=0 x[m−

n, k]s[n] + v[m, k], wherev[m, k] is white Gaussian noise.
For notational convenience, we assumeK is odd.

The observation can be written in a matrix manner as fol-
lows. Let the signal matrixP be anMn by Nv matrix, where
Nv = Mn + N − 1, with the signal sequences[n] beginning
at thepth element in thepth row,p = 1, 2, · · · , Mn. Then,

Yn = PBn + Vn (3)

whereYn is theMn × K observation matrix with elements
y[m, k] andVn is theMn × K noise matrix at timen with
elementsv[m, k].

2.3. Dynamic model

We assume a near-constant velocity model for each of the
scatterers, including the target. With this assumption, the vec-
torized scattering matrixan = vec(An) evolves according to
the dynamic equation

an = Fan−1 + wn (4)

wherewn is zero-mean, complex Gaussian noise with covari-
anceQn. The matrixF incorporates the movement of the
scatterers between dwells and populates the range-Doppler
cells that move into the validation gate.

To set up the matrixF , note that the first(K − 1)/2
columns of matrixAn represent negative Doppler shifts,
the center column represents zero Doppler, and the last
(K − 1)/2 columns represent positive Doppler shifts. These
correspond to scatterers moving away from the sensor, not
moving, and moving toward the sensor, respectively. In
each column ofAn, some scatterers will move out of the
validation gate while others will move in. The latter ef-
fect requires us to populate theempty range-Doppler cells.
This is accomplished by using an exponentially weighted
sum of the complex reflectivities in the immediate neigh-
borhood of these cells. As defined,F is a KNv × KNv

block-diagonal matrix, withFk (Nv ×Nv) presenting thekth
block,k = −(K −1)/2, . . . ,−1, 0, 1, . . . , (K −1)/2. When
k = −(K − 1)/2, . . . ,−1, Fk is given by:
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,

whenk = 1, . . . , (K−1)/2, the corresponding block is given
by:






















0 . . .
...

...
... 0

0 . . . 1
e−Nvα . . . e−α

...
...

...
(2k−1 − k + 1)e−(Nv+k−1)α . . . 2k−1e−kα























,

and whenk = 0, there is no movement of scatterers and the
corresponding block is simplyINv

. The relationship between
matrix An and Bn and the evolvement ofAn is shown in
Figure 1.

2.4. Dynamic and observation models of the scattering
function covariance matrix

According to (2) and (3),Yn = PAnD−1 + Vn. Using the
property vec(GJL) = (LH ⊗ G)j whereG, J, L are three
arbitrary matrices andj = vec(J) [4], the observation can be
vectorized as

yn = (D−H ⊗ P )an + vn = P̌an + vn (5)

with yn = vec(Yn) and P̌ = D ⊗ P . Then, (4) and (5)
give the original dynamic and observation models, respec-
tively. By taking covariance, The dynamical system model
can be further described as:

Σa,n = E[anaH
n ] = FΣa,n−1F

H + Qn, (6)
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Fig. 1. Relationship between matrixAn andBn and the evo-
lution of An.

whereQn is the covariance matrix ofwn. The observation
model is then

Σy,n = P̌Σa,nP̌H + Rn, (7)

whereRn is the covariance matrix ofvn. Using (7), we can
obtainp(yn|Σa,n) in order to update the filter. Note thatQn

in (6) andRn in (7) are assumed to be Wishart distributed
to describe the covariance matrix of multinormal sampleswn

andvn.
Although the objective is to estimate the space-time co-

variance matrixΣb,n of the scatterers, it is obvious that, from
(2),Bn = AnD−1 = INv

·AnD−1, and by vecterization,bn =
(D⊗INv

)an, then,Σb,n = (D⊗INv
)Σa,n(DH⊗INv

),which
meansΣb,n can be expressed in terms ofΣa,n.

3. PROPOSED ESTIMATION METHOD

3.1. Multiple particle filtering

Particle filtering is a sequential Monte Carlo method that is
based on sampling to approximate probability density func-
tions. Particle filtering is often an attractive alternative to
Kalman filtering when the system equations are nonlinear or
the noise is non-Gaussian [5, 6]. However, in many problems,
the dimensionality of the state space may be large such as in
our case, where the state space dimensionality is very large
since the covariance matrix in (6) is the state. In this situation,
a huge set of particles is needed to provide sufficient support
and the computational complexity of the algorithm becomes
prohibitive. As discussed in [3], multiple particle filtering can
be used to overcome this dimensionality problem.

Suppose the dynamic and measurement models of a sys-
tem can be expressed as:αn = fn(αn−1, ωn−1) andβn =
hn(αn, γn), whereαn is thedα-dimensional system state
vector at time stepn, fn andhn are (possibly nonlinear) func-
tions, andωn andγn are noise vectors. Using the multiple
particle filtering approach in [3],αn is divided intoL sub-
vectors,αn = [αT

1,n αT
2,n · · · αT

L,n]T . Eachαl,n, l =
1, 2, · · · , L, is estimated using a different particle filter. The
weights at time stepn are updated by:

w
(i)
l,n = w

(i)
l,n−1

p(βn|α
(i)
l,n, α̃−l,n)p(α

(i)
l,n|α

(i)
l,n−1, α̂−l,n−1)

πl(α
(i)
l,n|α

(i)
l,n−1, α̂−l,n−1, βn)

wherel indexes the individual particle filters,l = 1, 2, · · · , L,
i is the index for theith particle,i = 1, 2, · · · , I andα̃−l,n

andα̂−l,n−1 are the predicted and estimated values of all the
states at time stepn except ofαl,n, respectively.

3.2. Multiple particle filtering for the estimation of scat-
tering function covariance matrix

To take the advantage of Bayesian techniques to solve the sys-
tem, we vectorize the dynamic and observation models in (6)
and (7) as our proposed models:

Σ̃a,n = (F ⊗ F )Σ̃a,n−1 + Q̃n, (8)

Σ̃y,n = (P̌ ⊗ P̌ )Σ̃a,n + R̃n, (9)

where Σ̃a,n = vec(Σa,n), Σ̃y,n = vec(Σy,n), Q̃n =

vec(Qn) and R̃n = vec(Rn). After the vectorization, the
dimensionality ofΣ̃a,n is given byΞ = (KNv)

2. The value
of Ξ can be quite large, even if we consider a small number of
pulses. For example, if we useK = 9 pulses andMn = 10
range bins, then even if we reduce the signal length toN = 6,
we obtainNv = Mn + N − 1 = 15 and thusΞ = 18, 225.
Then, the state dynamic formulation suffers from high di-
mensionality that prevents direct implementation of particle
filtering and Kalman filter estimation techniques, even if the
transformations are linear. We therefore apply the multiple
particle filtering method [3] that we summarize in Section
3.1.

In (8), the evolution matrixF ⊗ F is block diagonal,

F ⊗ F =









F1 ⊗ F 0 · · · 0
0 F2 ⊗ F · · · 0

· · ·
0 0 · · · FK ⊗ F









andFk is defined in Section 2.3. The structure ofF ⊗F leads
to a natural decomposition of the dynamics of the state vector
into K independent subsystems:

Σ̃a,n =
[

ΛT
1,n, ΛT

2,n, . . . ,ΛT
K,n

]T

where each vectorΛk,n, k = 1, 2, · · · , K, has dimension
KN2

v . It is appropriate, then, to invoke the multiple particle



filter method withL = K particle filters applied simultane-
ously, one on each of theseK subsystems. For thekth sub-
system, the estimation of this segment of the current state is
obtained using the dynamic and measurement models

Λk,n = (Fk ⊗ F )Λk,n−1 + Vk,n

Σ̃y,n = (P̌ ⊗ P̌ )Σ̃a,n + R̃n (10)

The weight for theith particle is updated according to

w
(i)
k,n ∝ w

(i)
k,n−1

p(Σy,n|Λi
k,nΛ̃

(i)

−k,n)p(Λ
(i)
k,n|Λ

(i)
k,n−1Λ̂−k,n−1)

πk(Λ
(i)
k,n|Λ

(i)
k,n−1, Λ̂−k,n−1, Σ̃y,n)

where Λ̃−k,n = [Λ̂
T

1,n, · · · , Λ̂
T

k−1,n, Λ̂
T

k+1,n, · · · , Λ̂
T

k,n]T

andΛ̂
T

j,n =
∑Ms

i=1 w
(i)
j,n−1Λ

(i)
j,n, j 6= k. The observation,

that is used in thekth particle filter, has a complex Gaussian
distribution with zero-mean and covariance matrixΣy,n.

4. DEMONSTRATION OF EFFECTIVENESS

To demonstrate the effectiveness of the estimation method of
the space-time covariance matrix, we will investigate the per-
formance of detecting a moving target in heavy sea clutter.
The simulation will be executed on both simulated and real
sea clutter data. In both scenarios, a total ofK = 9 pulses
are transmitted in each dwell. The validation gate sizeMn is
chosen to be11. The waveform transmitted is chosen to be
an LFM chirp with signal lengthN = 6. Accordingly,L = 9
particle filters are running simultaneously with50 particles
for each.

4.1. Using simulated sea clutter data

Our simulation model consists of a constant-velocity target
that is observed by a single sensor in the presence of simu-
lated sea clutter. Sea clutter is generated using the compound-
Gaussian model described in [7].200 Monte Carlo simu-
lations are used to obtain the space-time covariance matrix
of reflectivities, which generated the simulated observations.
Then, using our method, the space-time covariance matrix of
sea clutter can be estimated.

Target returns at different pulses and range bins are added
to the observations, and we assume that the target is moving
with a constant velocity. The amplitudes of the target returns
are sampled from a zero-mean, complex Gaussian process
with varianceσ2, which is assumed known and determined
by the specified SCR values and clutter energy. The GLRT
detector [8] is then applied to the observations based on the
estimates of the space-time covariance matrix.

The detection performance is shown in Figure 2.

4.2. Using real sea clutter data

We further apply our method to the real dataset which was
collected by DSTO INGARA radar in Darwin, Australia in
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Fig. 2. Receiver operating characteristic curves for a GLRT
detector operating at various SCR values (given in dB).

1999. The transmitted signal was an LFM chirp with band-
width 96 MHz and A/D sampling rate100 MHz. The car-
rier frequency is9.375 GHz, a pulse width8 us and PRF500
Hz. The peak power is5 kW. Wind speed is13 m/s. The
space-time covariance matrix is estimated using our proposed
method based on the real data, which is then used in the de-
tection procedure.

To demonstrate the effectiveness of our method, we add
returns of a moving target with a constant velocity into the
raw data. Based on the estimated covariance matrix, a GLRT
detection is then applied. Note that, the clutter strength is
obtained using the estimated covariance matrix.

The receiver operating characteristic curves are shown in
Figure 3 with different SCR values. The performance is rea-
sonably not as good as the results got from simulated sea clut-
ter.
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Fig. 3. Receiver operating characteristic curves for a GLRT
detector operating at various SCR values (given in dB) using
real data collected by DSTO INGARA radar.



5. CONCLUSION

We proposed a sea clutter space-time covariance matrix esti-
mation method using the following two steps. We first vec-
torize the dynamic system equations to yield a structure in the
state matrix. Then we use that structure in a multiple particle
filtering approach to reduce the high dimensionality in the for-
mulation. Simulations based on both simulated and real sea
clutter data have been undertaken to demonstrate the effec-
tiveness of our method. Note that the proposed dynamic esti-
mation is particularly important in the context of waveform-
agile radars where estimation of the clutter characteristics in
one dwell can be used in the design of the transmitted wave-
form in the next dwell.
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