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Abstract
We develop optimal adaptive design of radar waveform polar-
izations for a target in compound-Gaussian clutter. We present
the maximum likelihood (ML) estimates of the target’s scatter-
ing matrix and clutter parameters using a parameter-expanded
expectation-maximization (PX-EM) algorithm. We compute
the Cramér-Rao bound (CRB) on the target’s scattering matrix
and use it as the optimization cost function. We illustrate the
performance of our algorithm and compare it with traditional
ones through numerical examples.

1. INTRODUCTION

The problem of optimally selecting the polarization state of
radar transmitted waveforms has received much attention. An
optimal polarization state selection approach was first consid-
ered in [1], which enables treating symmetric, asymmetric,
monostatic, and bistatic cases in an identical way, see also [2].
The optimization is in the sense of maximizing the voltage at
the receiving antenna under the assumption that the scattering
matrix S is known, see [2, 3] and Section 2. However, in prac-
tice, the scattering matrix of the target of interest is usually
unknown because the target is either completely unknown or
its posture is unknown. Additionally, the backscattered clutter
from the unsteady environment, such as sea surface and foliage
covered terrain, is typically non-Gaussian, see e.g. [4], which
makes it more challenging to estimate the scattering matrix ac-
curately.

In this paper, we consider adaptive optimal waveform design
for polarized signals under compound-Gaussian clutter models
with inverse gamma distributed texture, which is often used to
model clutter in high-resolution and low-grazing-angle radar,
see [5]-[7]. In this model, the complex clutter can be written
as

e(t) =
√

u(t)χ(t), (1)

where χ(t) is the fast-changing component, accounting for lo-

cal scattering, and is referred to as speckle. It is assumed to be
a stationary complex Gaussian process with zero mean, whose
covariance matrix Σ is unknown. The slow-changing compo-
nent u(t) describes the variation of the local power due to the
tilting of the illuminated area, and is called texture. The tex-
ture u(t) is modeled as a stationary non-negative real random
process with unknown parameter ν. We assume u(t) follows
the inverse gamma texture distribution because of the simplic-
ity in its computation, see [5], [6], and [8]. It has been shown
in [8] to fit well real data.

Fig. 1. Polarized radar waveform optimization block diagram.

We illustrate the concept of adaptive polarimetry design in
Fig. 1. The transmitted polarized signal is scattered by the tar-
get and environment. At the receiver end, measurements of the
sum of the scattered signal from the target and the interference
from the environment (clutter) are obtained. Using these mea-
surements, we estimate the parameters of both the target and
the environment, and optimally choose the signal variables for
the transmission to achieve the best system performance. We
develop optimal adaptive design of polarized signals fitting the
estimated target to get the best estimation performance of the
scattering matrix. First we compute the maximum likelihood
(ML) estimate of the scattering matrix S using a parameter-
expanded expectation-estimation (PX-EM) algorithm, see [9].
We compute also the Cramér-Rao bound (CRB) on S and use
it as the performance measure for the optimal design. Then
we design algorithms to optimally or suboptimally select the



polarization state parameters for the next transmitted signals
under the criterion of minimizing the CRB.

The paper is organized as follows. In Section 2, we intro-
duce the polarized radar signal measurement model. In Sec-
tion 3, we present the ML estimates of the scattering matrix
S, speckle covariance matrix Σ and texture distribution para-
meter ν. In Section 4, we first compute the CRB on S, then
present the algorithms for designing the polarization state of
the transmitted waveform. We evaluate the performance of the
algorithm with numerical examples in Section 5.

2. MEASUREMENT MODEL

In this section, we present our parametric measurement model
of a polarized signal with additive compound-Gaussian dis-
tributed clutter. To focus the discussion on the adaptive de-
sign process, we consider the simple coherent one-transceiver-
antenna case (monostatic). We assume that the target is an
ideal point scatterer in far field, which is stationary during the
observation time and that the target’s range and direction are
known.

Let ξ(t) = [ξh(t), ξv(t)]T be the transmitted polarized electric
field impinging on the target, and y(t) = [yh(t), yv(t)]T be
the complex envelope of the received (scattered) electric field,
where the subscripts “h” and “v” denote the horizontal and ver-
tical polarization components of a fully polarized signal. Un-
der the far-field assumption, the scattered filed is related to the
incident field by [2, 10, 11]:

y(t) = g(r) S ξ(t) + e(t), t = 1, 2, . . . , N, (2)

where r denotes the range from the transmitting antenna to the
target, S is the 2 × 2 scattering matrix, and e(t) denotes addi-
tive clutter. For simplicity, we ignore the measurement noise
here. Assume e(t) = [eh(t), ev(t)]T to be independent and
identically distributed (i.i.d.), under compound-Gaussian with
parameters Σ and ν, where the superscript “T ” denotes the
transpose. The variable N is the number of temporal observa-
tions. Denoting the wave number of the carrier waveform by
k, we have g(r) = e−2jkr/2kr corresponding to the propaga-
tion magnitude attenuation and phase shift, which is a (known)
complex scalar. We will estimate the scattering matrix of the
target

S =
[

shh shv

svh svv

]
(3)

which characterizes the polarization features of the target [3,
10, 11]. The first and second subscripts of each element in S
denote the polarization components in the receiving and trans-
mitting signals, respectively. For the reciprocal monostatic
case, we can assume shv = svh.

We parameterize the transmitted signal using the notations of
[12] and [13] (omitting time index for notational simplicity):

ξ = ‖ξ‖ejϕ Qw, (4)

where

Q =
[

cos α sinα
− sinα cos α

]
, w =

[
cos β
j sinβ

]
, (5)

‖ξ‖ejϕ is the complex envelope of the source signal, α de-
notes the rotation angle between the coordinates and the elec-
tric ellipse axes, and β determines the ellipse’s eccentricity,
see [12]. The definition space of these parameters are: ‖ξ‖,
ϕ ∈ (−π, π], α ∈ (−π/2, π/2], β ∈ [−π/4, π/4]. Consid-
ering that the transmitted signal is power-limited, we exclude
‖ξ‖ out of the design by setting ‖ξ‖ = 1, i.e.,

ξ = ejϕ

[
cos α cos β + j sinα sinβ
− sinα cos β + j cos α sinβ

]
. (6)

3. SCATTERING MATRIX ESTIMATION

The traditional way of measuring the scattering matrix of a
given target is to transmit intermittently vertically and hori-
zontally polarized signals and recording both components of
the received wave. From the measurement, the scattering ma-
trix is calculated by its definition. Previous work on measuring
the scattering matrix assumes no interference in the measure-
ment [14]. In the following, we estimate the scattering matrix
under compound-Gaussian noise assumption.

We now propose the ML estimate for the scattering matrix S
and clutter parameters Σ , ν in the measurement model (2). By
definition, the reciprocal of u(t) follows a gamma distribution
with mean one and unknown shape parameter ν, i.e. the prob-
ability density function (pdf) of u(t) is

pu(u(t); ν) =
1

Γ(ν)
ννu(t)−ν−1e−ν/u(t) ∼ iGamma(ν, 1/ν),

(7)
where Γ(·) is the gamma function. The conditional distribution
of y(t) given u(t) is

py|u(y(t) |u(t);S,Σ ) = exp
{
− [y(t)− g(r)Sξ(t)]H

·[u(t)Σ ]−1 · [y(t)− g(r)Sξ(t)]
}/

|πu(t)Σ |. (8a)

Since it is impossible to find a closed-form solution for the ML
estimates of S, Σ and ν from the observed data likelihood,
we use expectation-maximization (EM) algorithm to find the
ML estimates from the complete data log-likelihood, which is
easier to manipulate mathematically. Define the unobserved
data w(t) = u(t)−1. Our goal is to find the estimates that
maximize the complete data log-likelihood.

The model (2) is a special GMANOVA model (see [15]) with
spatial-temporal matrix A = g(r) · I , where I is the 2 × 2
identical matrix. Thus, we simplify the PX-EM algorithm we
proposed in [16] as below for our problem.

The estimation algorithm is composed of two loops. In the
inner loop, the ML estimates of S and Σ are computed for
a fixed ν value using PX-EM algorithm. In the outer loop,



we estimate ν with the estimation results in inner step using
alternate projection until ν converges.

Estimating S and Σ : With a fixed ν(j), j = 1, 2, . . ., the
resulting PX-EM algorithm consists of iterating between the
following PX-E and PX-M steps:

PX-E Step: Here we compute the conditional expectations
Tk(ν̂(j)) = E {Tk(w; ν̂(j))|y} of the sufficient statistics Tk(ν̂(j)),
k = 1, 2, 3 for {S,Σ , ν}.

ŵ(i)(t; ν(j)) = (ν(j) + 2) ·
{

ν(j) + [y(t)− g(r)S(i)ξ(t)]H

·[Σ (i)]−1 [y(t)− g(r)S(i)ξ(t)]
}−1

(9a)

for t = 1, 2, . . . , N and

T (i)
1 (ν̂(j)) =

1
N

·
N∑

t=1

y(t)ξ(t)H · ŵ(i)(t; ν(j)), (9b)

T (i)
2 (ν̂(j)) =

1
N

·
N∑

t=1

y(t)y(t)H · ŵ(i)(t; ν̂(j)), (9c)

T (i)
3 (ν̂(j)) =

1
N

·
N∑

t=1

ξ(t)ξ(t)H · ŵ(i)(t; ν̂(j)). (9d)

PX-M Step: Compute the ML estimates using the condi-
tional expectations of the sufficient statistics from the E step:

Ŝ(i+1)(ν̂(j)) =
1

g(r)
T (i)

1 (ν̂(j))(T (i)
3 (ν̂(j)))−1, (10a)

Σ̂ (i+1)(ν̂(j)) =
N∑N

t=1 ŵ(i)(t; ν̂(j))
·[

T (i)
2 (ν̂(j))− T (i)

1 (ν̂(j)) (T (i)
3 (ν̂(j)))−1 (T (i)

1 (ν̂(j)))H
]
, (10b)

i = 1, 2, . . .

The above iteration is performed until Ŝ(i)(ν̂(j)) and Σ̂ (i)(ν̂(j))
converge. Denote by Ŝ(∞)(ν̂(j)) and Σ̂ (∞)(ν̂(j)) the estimates
of Ŝ and Σ̂ obtained upon convergence.

Estimating ν: We compute the ML estimate of ν by maxi-
mizing the observed-data concentrated log-likelihood function
with respect to Ŝ(∞)(ν̂(j)) and Σ̂ (∞)(ν̂(j)):

ν̂(j+1) = arg max
ν

N∑
t=1

ln py

(
y(t); Ŝ(∞)(ν̂(j)), Σ̂ (∞)(ν̂(j)), ν

)
.

(11)
Next we estimate S and Σ using this new estimate of ν̂(j+1),
etc.

4. OPTIMAL WAVEFORM PARAMETER
SELECTION

Since the estimation algorithm we use is maximum-likelihood,
its asymptotical accuracy is expected to attain the CRB. So by

minimizing the CRB cost-function with respect to the trans-
mitted signal, we will minimize the corresponding asymptotic
estimation error. We will then choose the polarization state that
minimizes the CRB to be transmitted in the next pulse. Thus,
in this section we will consider the optimal polarization design
subject to minimizing the CRB function.

4.1. Cramér-Rao Bound
Define the vector of parameters of interest

ρ = [Re{vech(S)}T , Im{vech(S)}T ]T , (12)

where the “vech” matrix operator creates a single column vec-
tor by stacking elements below (including) the main diagonal
columnwise. Considering that Shv = Svh, then ρ is a 6 × 1
vector and the CRB with respect to ρ is a 6 × 6 matrix. We
minimize the determinant of the CRB matrix, which is also
known as the D-optimality criterion [17]. This is equivalent to
maximizing the determinant of the Fisher information matrix
(FIM), whose elements are (see [16]):

[I(ρ;Σ )]pq =
2(ν + 2)‖G(r)‖2

ν + 3

·Re
[ N∑

t=1

ξ(t)H ∂SH

∂ρp
· Σ−1 · ∂S

∂ρq
ξ(t)

]
. (13a)

Hence, the FIM can be expressed as

I(ρ;Σ ) =
2(ν + 2)‖g(r)‖2

ν + 3
Re

( N∑
t=1

F (αt, βt,Σ ,ρ)
)
,

(14)
where F (αt, βt,Σ ,ρ) is the contribution of the t th signal to
the FIM. The (p, q)th entry of F (αt, βt,Σ ,ρ) has the form:

[
F (αt, βt,Σ ,ρ)

]
pq

= Re
(
ξ(t)H · ∂SH

∂ρp
Σ−1 ∂S

∂ρq
· ξ(t)

)
.

(15)

We now discuss the properties of FIM with respect to the trans-
mitted signal.

Property 1. The initial signal phase ϕ does not affect the FIM.

Substituting the right side of (6) into (13a), we find that the
FIM is independent of the initial phase ϕ, namely ϕopt can be
arbitrarily selected in (−π, π] without affecting the estimation
performance.

Property 2. For N = 1, the determinant of FIM equals to
zero.

Considering that the covariance matrix of the speckle is Her-
mitian, and so is its inverse, we denote the inverse of the cur-
rent estimate of the speckle covariance matrix as

Σ−1 =
[

a1 a2 − jb2

a2 + jb2 a3

]
(16)



where a1, a2, a3, b2 ∈ R.

Substitute (4) and (16) into (15). Then, with the help of a sym-
bolic function software, e.g., MATLAB, it is not hard to find
that the determinant of F (αt, βt,Σ ,ρ) equals zero despite the
polarization state {αt, βt, ϕ} of the transmitted signal. Hence,
the determinant of the FIM equals zero in this case. Note that
the dimension of the scattering matrix S is 2× 2 and the trans-
mitted signal ξ(t) is a 2 × 1 vector. The returned single signal
will enable identifying the scattering matrix.

Interestingly, if fixed polarized waveforms are transmitted in
all N steps, the determinant of FIM will still be zero. That
is, increasing the number of observations without changing the
transmitted waveform will not improve the estimation quality
– the non-identifiability will still exist [13].

4.2. Adaptive Optimal Polarization State Design
We now present the proposed algorithm for optimal radar wave-
form polarization state design and a suboptimal version, under
the criterion of minimizing the CRB cost function.

Denote

JN(Σ ) =
N∑

t=1

F (αt, βt,Σ ,ρ), (17)

where F (αt, βt,Σ ,ρ) denote the contribution of the transmit-
ted signal ξ(αt, βt) to the FIM.

The optimal polarization state design method includes the fol-
lowing three steps:

Step 1: Update Σ with the estimation from N observations
(see Section 3), Σ = Σ̂N .

Step 2: Calculate JN(Σ̂N).

Step 3: Find the optimal value {α∗N+1, β
∗
N+1} within their de-

finition space:

{α∗N+1, β
∗
N+1} = arg max

{α,β}∈[−π
2 , π

2 )×[−π
4 , π

4 ]

det
[
JN(Σ̂N) + F (α, β, Σ̂N ,ρ)

]
. (18a)

5. NUMERICAL EXAMPLES

We demonstrate the effectiveness of our algorithm through nu-
merical examples. We set the true value of the scattering ma-
trix to

S =
[

2j 0.5
0.5 −j

]
, (19)

which is used also in [1] and [2]. The speckle covariance ma-
trix Σ was generated using a model similar to that in [18, Sec.
2.6] with 1000 patches. The (p, q)th element of the covariance
matrix of the speckle component was chosen as

Σp,q = σ2 ·0.9|p−q| · exp[j(π/2)(p− q)], p, q = 1, 2. (20)

In the examples presented here, we selected σ2 = 2.05. In
the following numerical examples, without specification, we

set the speckle covariance matrix to the above value and the
texture distribution parameter ν = 2. Since we assume the
target’s range r and direction are known, the value of factor
g(r) will not affect the results.

Note that the PX-EM algorithm can only converge after a cer-
tain number of measurements. Hence we send 10 pilot sig-
nals to start the algorithm. The pilot signal parameters are ran-
domly selected in each realization.

In Fig. 2, we show the square-root of normalized MSEs of
S, which is calculated by averaging the ratio of the square-
root of MSE of each estimate to its true value, under three
noise related assumptions. The actual scenario is set to that the
scattered field from the target is contaminated by compound-
Gaussian distributed noise. We first use the traditional method,
i.e., we send intermittently changing vertical and horizontal
polarized signals and assume no clutter noise in the measure-
ment (e.g., see [10] and references therein). Then we assume
the measurement is contaminated by Gaussian noise and esti-
mate S based on this assumption. We also show the square-
root of normalized MSE of the ML estimate for S under the
compound-Gaussian noise assumption with our optimal de-
sign algorithm. The results show that the optimal polarization
design algorithm under compound-Gaussian noise assumption
has a smaller MSE value than the other two at every evaluation
point.

In Fig. 3, we show the average MSEs for the ML estimates of
the scattering matrix parameters over 50 independent trials as
functions of N . Two different signal transmitting schemes are
compared here: (i) fixed signal with α = π

3 , β = π
6 , and (ii) op-

timally designed signal. We vary the observation number from
10 to 100 in each scheme. Note: we just show the average of
elements in scattering matrix here. Since at each step, the most
efficient waveform (in terms of minimizing CRB) is selected,
the result of optimal adaptive algorithm converges much faster
than the other one when the number of observations increases.
The average MSE of Ŝ decreases about 6dB, comparing with
the fixed signal. Note that the average MSE of Ŝ is computed
by averaging the MSE of each entries of S.

6. SUMMARY

We developed optimal adaptive design methods of the radar
waveform polarization state under compound-Gaussian clut-
ter. We first presented the maximum-likelihood estimates for
the scattering matrix and the clutter distribution parameters
based on a parameter-expanded expectation-maximization al-
gorithm. Then we computed the Cramér-Rao bound on the
scattering matrix S and used it as the performance measure.
By minimizing the CRB cost function, we optimally selected
the polarization state for the waveform to be transmitted in the
next pulse. In the numerical examples, we compared the per-
formance of these algorithms and showed a significant perfor-
mance improvement in the estimation accuracy compared with
conventional methods.



Fig. 2. Square-root of normalized mean-square errors of es-
timating the elements of the scattering matrix S for three dif-
ferent noise assumptions: (i) no noise, (ii) Gaussian noise, and
(iii) compound-Gaussian noise, where ν = 2,Σ1 = Σ .

Fig. 3. Averaged mean-square errors of estimating the ele-
ments of the scattering matrix S for three different transmit
signal schemes: (i) fixed signal, and (ii) optimal design.
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