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Abstract— The shallow water environment can be character-
ized as a time-dispersive system whose time-varying impulse
response can be expressed as a superposition of time-frequency
components with dispersive structures. In this paper, a blind time-
frequency processing technique is employed to separate these
components without knowledge of environmental parameters.
This technique is based on first approximating the time-frequency
structures of the received signal, and then designing separation
filters based on time-frequency warping techniques. Based on
this method, a receiver is developed to exploit the diversity of
the channel and to improve communications performance.

I. INTRODUCTION

The shallow water acoustic environment is a linear time-
varying (TV) dispersive system that can shift different frequen-
cies by different amounts in time [1] due to the transmitted
waveform’s interactions with the ocean bottom and surface.
This dispersive effect can severely limit the performance of
underwater acoustic applications such as sonar and communi-
cations. It can be shown that the propagation characteristics of
such an environment can be determined by specific nonlinear
functions that define the dispersion in this environment and
provide a means of modeling the environment according to
how it distorts the transmitted signal. Thus, signals can be
used to exploit the potential diversity suggested by the model
when the receiver is appropriately designed to match these
nonlinear functions.

In [1], a characterization of shallow water was considered
that matched dispersive signal transformations on the transmit-
ted waveforms and was successfully used for shallow water
communications to obtain time-dispersion diversity. However,
this characterization was only applicable to signals with very
high bandwidth as it assumed that the transmitted waveform
was an impulse. In [2], we presented a more generalized
characterization that was applicable to a larger class of signals
by using the normal-mode model in [3] assuming perfect
waveguide conditions (homogeneous fluid layer with a soft
top and rigid seabed).

Note, however, that both of the above methods require ac-
curate environmental information (such as bathymetry, sound
speed profile, attenuation and density), which is often un-
available or inaccurate, in order to obtain the closed form
expressions of the models. In this paper, we employ a blind
method for separating the time-frequency (TF) components of
the received signal that relate to some nonlinear functions. This
technique consists of two steps: (i) the TF structures of the

received signal are identified [4], and (ii) the TF components
are separated using a TF based non-unitary warping technique
[5]. After the separation of each component, we design a pilot-
aided communication scenario, and we obtain time-dispersion
diversity by appropriate receiver design. Note that we conduct
our investigation in the context of the Pekeris waveguide model
with pressure-release surface and fluid boundaries [6], which
is a simplified model for shallow water environments.

II. SHALLOW WATER ENVIRONMENT MODELING

The Perkeris model treats the shallow water environment
with pressure-release surface and a fluid seabed following [3],
[6], [7]. This is shown in Fig. 1 using the coordinate system
(r, z) corresponding to range and depth, respectively. An
omnidirectional point source with spectrum X(f) is located
in the ocean at r = 0 and z = z0. We consider the sound
speed in the ocean as a constant c m/s and density ρ kg/m3,
and at the seabed as cB m/s and density ρB kg/m3.
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Fig. 1. Waveguide model with point source in Medium II at r = 0, z = z0,
D m deep for a pressure release surface with a fluid seabed [6].

The ocean surface (at z = 0) is modeled realistically as
an ideal pressure release boundary, and the ocean bottom (at
z = D) is modeled as a boundary between two different fluid
media. The normal mode model is given by the solution of
this ocean waveguide problem, which is determined by the



environment parameters and satisfies all boundary conditions,
including the boundary condition at the source.

Following [6] and [7], the received signal spectrum excited
by X(f) at (r, z) is given by the Pekeris waveguide model:

YPekeris(f) = X(f)
Nm−1∑
n=0

Cn(f)Θn(f). (1)

Without the assumption of ideal waveguide condition as in [2],
the nth mode is characterized by
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is the wave number of the nth mode and Nm is
the largest mode number. The parameter Cn(f) =
A2

n(f)sin(kzn(f)z0)sin(kzn(f)z) in (1) is a function of fre-
quency where
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The TF characteristic of the acoustic signal is determined by
the modal group velocity (MGV) gn(f), and the propagating
delay of the frequency f0 in the nth mode is determined by
τn(f0) = r

gn(f0)
. The MGV is shown in Fig. 2. Note that, for

the waveguide model with fluid seabed, the MGV approaches
c when the frequency approaches infinity; it approaches cB

when the frequency approaches the cutoff frequency of this
mode.

III. BLIND IDENTIFICATION AND SEPARATION

In many cases, environmental parameters such as TF char-
acteristics are not known and need to be identified. In this
section, we are considering the problem of identifying the TF
structures (or group velocity signatures) of the received signal
after it propagates through shallow water, and then separate
the TF components without knowing the environmental para-
meters.

A. Blind Identification of Normal Modes

Following the normal-mode model in [3], we expect the
TF structures to vary dispersively with frequency according
to some functions ξn(f) = kn(f)r, n = 0, · · · , Nm−1 in
(1). The normal-mode model treats the ocean as a waveguide
with plane, parallel boundaries, representing the acoustic field
in the ocean medium as a sum of normal modes; in the
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Fig. 2. Modal group velocity (MGV) function.

context of this paper, each mode can be seen as a TF signature
component. For example, Fig. 3(a) represents the spectrogram
of the received signal for Nm = 3 modes where the ocean
depth is 100 m and the range between transmitter and receiver
is 15 km. Each mode is shown as a dispersive component in
the TF plane.

Specifically, following (1), we denote the nth mode as

Yn(f) = Cn(f)Θn(f). (3)

We want to approximate the real part of Yn(f) for f ∈
[i∆f, (i + 1)∆f ], i = 0, · · · , In − 1 using the linear chirps
Ȳn,i(f) = cos(2πφn,i(f)). Here ∆f is a fixed frequency
interval, In is the total number of chirps used to approximate
the nth signature, and

φn,i(f) = an,i + bn,if + cn,if
2, (4)

where an,i, bn,i and cn,i are the chirp parameters. Since
the group velocity function (GVF) in (4) is a continuous
function, We expect that the chirp Ȳn,i(f) is related to the
chirp Ȳn,i+1(f) by the following continuity constraints. Since
chirp sequence has continuous instantaneous frequency and
phase, then

bn,i+1 = bn,i + 2(i∆f)(cn,i − cn,i+1), (5)

an,i+1 = an,i + bn,i(i∆f) + cn,i(i∆f)2. (6)

Let Ȳn,i(f) be the chirp which best approximates the com-
ponent Yn(f) over the frequency interval [i∆f, (i + 1)∆f).
Then the next chirp Ȳn,i+1(f) on the frequency interval
[(i+1)∆f, (i+2)∆f) is defined to be the one that best matches
Yn(f) with the continuity constraints (5) and (6).

The problem of finding Ȳn,i(f) can be formulated as a
multi-hypothesis detection problem, which can be solved by
quadrature matched filtering [8]. We denote the candidates
for the chirp phase as φk

n,i(f), k = 1, · · · ,K. The best
of the candidates, φkbest

n,i (f), can be found by the following



maximization problem

kbest = max
k

nk
s(xk

c )2 − 2nk
csx

k
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s)2

2nk
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x − 2(nk
cs)2

, (7)

subjected to (5) and (6), where

xk
c =

∫ (i+1)∆f

i∆f

Yn(f)cos(2πφk
n,i(f))dt,

xk
s =
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i∆f

Yn(f)sin(2πφk
n,i(f))dt,

nk
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∫ (i+1)∆f

i∆f

cos2(2πφk
n,i(f))dt,

nk
s =

∫ (i+1)∆f

i∆f

sin2(2πφk
n,i(f))dt,

and nk
cs =

∫ (i+1)∆f

i∆f

cos(2πφk
n,i(f))sin(2πφk

n,i(f))dt.

Thus, the solution to the above constrained programming
problem can give the optimal estimation of Yn(f) for f ∈
[i∆f, (i+1)∆f) in additive white Gaussian noise. Using this
approach, the dispersive curves in Fig. 3(a) are estimated in
Fig. 3(b).

B. Time-Frequency Component Separation

Fig. 3(a) illustrates that each mode of the received signal
appears as a dispersive curve in the TF plane, which makes
the separation of the modes possible. In this section, we use a
TF mode separation technique based on a warping technique.

In Section III-A, we approximated Nm normal modes. We
can then design Nm−1 GVF curve separators in the TF plane,
represented as en(f), n = 0, · · · , Nm − 2. A GVF curve
separator is a curve situated between two successive modes in
the TF plane as shown in Fig. 3(c). Knowing the TF signatures,
we appropriately set M TF points (tl, fl), l = 1, 2, . . . , M in
the middle of the space between two successive modes. The
M points between the nth mode and the (n + 1)th mode will
constitute the GVF curve separator en(f) that will be used for
separating the Nm TF signatures Yn(f), n = 0, · · · , Nm− 1.

To separate the TF components according to the obtained
GVF curve separators, we employ a non-unitary warping
operation defined as

(W̌ζY )(f) =
∫

R
Y (v)δ(v − ζ−1(f))dv = Y (ζ−1(f)). (8)

The non-unitary operator overcomes the spreading effect of
unitary warping operators [5], and it can be verified that

(
F−1W̌e−j2πt0ζ(f)

)
(t) = δ(t− t0) (9)

as
(W̌ζe

−j2πt0ζ(f)
)
(f) = ej2πft0 , where the inverse Fourier

transform (FT) is given by
(F−1X(f)

)
= x(t).

We process the different modes in the TF plane using
this non-unitary warping [4], [5] and the local harmonic
convolution operator [5]. Assume that the received noisy signal
in (1) is r(t) with FT R(f) = YPekeris(f) + W (f), where

W (f) is additive white Gaussian noise. We then obtain the
warping functions from the GVF curve separators as ζn(f) =
1

λr

∫ f

−∞ en(v)dv, where λr > 0 is a normalization constant,
and compute the corresponding generalized FT of R(f) as [9]

MR(λ) = (Mζn
R) (λ) =

∫

℘

R(f)
dζn(f)

df
ej2πλ ζn(f)df.

(10)
Here, ℘ contains the values of f in the domain of the
warping function ζn(f), and λ is a real and unitless parameter.
To obtain the first mode n = 0, we compute the inverse
generalized FT over the range (−∞, λr] as follows:

R0(f) =
∫ λr

−∞
MR0(λ)e−j2πλζ0(f)dλ. (11)

Further, we can rewrite (11) as

R0(f) =
∫ ∞

−∞
hL(λ)MR0(λ)e−j2πλζ0(f)dλ, (12)

where hL(λ) = 1 if λ ∈ (−∞, λr] and hL(λ) = 0 if λ ∈
(λr,∞]. One can show that (12) simplifies to

R0(f) =
∫ ∞

−∞

∫

℘

R(v)hL(λ)
dζ0(v)

dv
ej2πλ (ζ0(v)−ζ0(f))dvdλ

=
∫

℘

R(v)
dζ0(v)

dv
HL (ζ0(f)− ζ0(v)) dv, (13)

where HL(f) =
∫∞
−∞ hL(λ)e−j2πλfdλ is the FT of the

lowpass filter hL(λ).
We subtract the first mode from the received signal, i.e,

R̂(f) = R(f)−R0(f), and the remaining modes are contained
in R̂(f). To obtain the seconde mode, we apply the above
procedure to R̂(f) using the GVF curve separator e1(f).
Repeating the above procedure for each GVF curve separator,
we can then separate each mode from the received signal.

For the example in Fig. 3, we use the mode separation
technique on the received signal excited by the waveform
X(f) =

√
f, f > 0 for Nm = 3 modes. The GVF curve

separators are shown in Fig. 3(c) and the separated components
are shown in Fig. 3(d).

IV. TIME-DISPERSION DIVERSITY RECEIVER DESIGN

Although the shallow water environment model provides
an inherent frequency domain transfer function, in realistic
shallow water environments, many factors can cause distortion
in the signal propagation. For example, the ocean surface
fluctuates with the waves, and the roughness of the ocean
bottom affects the signal reflections. Hence, it is reasonable to
introduce randomness into the channel model. We model this
distortion following the data generated by the normal-mode
modeling software KRAKEN [10]. Specifically, we model the
randomness by Dn which can be modeled as

Dn = αn + ∆%n. (14)

This is a random variable with mean αn and variance σ2
Dn

.
In practice, Dn needs to be measured by conducting a system
identification. Additive noise is also introduced in the model
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Fig. 3. (a) Spectrogram of received signal. (b) Approximated TF signatures
(GVFs). (c) GVF curve separators. (d) Separated TF components.
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Fig. 4. A receiver design for time-dispersion diversity using TF mode
separation.

due to the random disturbance in the ocean environment and
receiver. Hereby, the received signal spectrum is expressed as

R(f)=Y (f) +W (f)=X(f)
Nm1∑
n=0

DnCn(f)Θn(f)+W (f),

(15)
W (f) is additive white Gaussian noise with variance σ2

W .

A. Receiver Design with TF Component Separation

After the TF mode-components are separated, each com-
ponent can be treated as a subchannel of the shallow water
communication channel; hence diversity can be obtained if the
receiver is properly designed. Our proposed receiver design for
diversity is shown in Fig. 4. To exploit the potential diversity,
we first transmit a pilot symbol b to separate the modes.
Then, the received signal is analyzed, and each component is
separated and used jointly with the channel coefficients as the
matched filter for the received signal of the next transmitted
symbols. The outputs of the matched filters are combined,
and the decisions for the estimated symbols are made using a
minimum error probability detector.

This receiver processing can be described as follows.
Concatenating the signals Un(f) = Cn(f)Θn(f), we can
express the resulting separation results using vector U(f) =
diag{U0(f), · · · , UNm−1(f)}. Similarly, we rewrite the
transmitted symbol b as an Nm × 1 vector b = [b, b, · · · b]T.
Let D = diag (D0, D1, · · · , DNm−1) be the Nm×Nm matrix
whose diagonal elements are the random channel coefficients
in (14), and W(f) = [W0(f), · · · ,WNm−1(f)]T, where we
assume a different noise covariance for each TF component
after separation. Using the vector notation, the received spec-
trum after separation can also be written as

R(f) = U(f) Db + W(f). (16)

The output of this filter bank is given by Z = PDb+W, where
P =

∫
U∗(f)U(f) df is the matrix of correlations between

different modes, and W =
∫

U∗(f)W(f) df is the noise at
the output of the matched filters. It can be shown that the
expected value E[Wm(f1)Wn(f2)] = 0,∀ f1, f2, for m 6= n.
As a result, Ccov = E

[
WW†] = diag{σ2

0 , · · · , σ2
Nm−1} is a

diagonal matrix, where σ2
n is the noise covariance in the nth

subchannel.
If binary antipodal symbols are transmitted, i.e., b = +1 or

−1, and we denote d = Db using the above notation, then the
communication problem stated above is converted to a classic,
detection problem with hypothesis

H0 : Z = −Pd + W, (17)
H1 : Z = Pd + W. (18)

We notice that P is a diagonal matrix whose elements
correspond to the powers of each mode qn, n = 0, ..., Nm−1.
To compute qn, we can transmit two pilot symbols, and
after separation, we can obtain D

(1)
n U

(1)
n (f) + W

(1)
n (f) and

D
(2)
n U

(2)
n (f) + W

(2)
n (f), respectively, for two transmissions.

We already assumed D
(1)
n and D

(2)
n are known. Thus, qn ≈∫ (

D
(1)
n U

(1)
n (f) + W

(1)
n (f)

)(
D

(2)
n U

(2)
n (f) + W

(2)
0 (f)

)∗
df ,

because W
(1)
0 (f) and W

(2)
0 (f) are zero mean and

uncorrelated. We also know that all the elements
are greater or equal to zero. Hereby we assume
q0 ≥ q1 ≥ · · · qNm−2 ≥ qNm−1 ≥ 0. Then according
to the Neyman-Pearson theorem, the detector decides H1 if

L(Z) =
∏Nm−1

n=0 e
− |Zn−qndn|2

2σ2
nqn

∏Nm−1
n=0 e

− |Zn+qndn|2
2σ2

nqn

> γ, (19)

where L(Z) is the likelihood function for this detection prob-
lem, Zn is the nth element of vector Z, and dn is the nth
element of vector d. The threshold γ is computed using the
Bayesian approach to minimize the probability of error in the
received symbols. If the probabilities of transmitting +1 and
−1 are equal, we can choose γ = 1 to obtain the minimum
bit error rate (BER). After simplification of (19), the detector
decides H1 if

Nm−1∑
n=0

<
{

Znd∗n
σ2

n

> 0
}

, (20)



where <{·} is the operator that takes the real part.

B. Performance Analysis

In this section, the BER and diversity performances of
the proposed receiver design are investigated. From (16),
we know that the Nm correlated received signals can be
transformed into Nm independent received signals. Without
loss of generality, we assume that b = 1 is transmitted.
Then, the Nm independent signals can be expressed as Zn =
qndn + Wn, n = 0, 1, · · · Nm − 1, where Zn is the
nth element of Z, and Wn is the nth element of noise W.
According to the minimum error probability detector rule in
(20), we have

Znd∗n = qndnd∗n + Wnd∗ , n = 0, 1, · · · Nm − 1, (21)

The SNR of the nth received signal in (21), denoted as ηn,
can be expressed as

ηn =
q2
n|dn|4

E[dnW ∗
nWnd∗n]

=
q2
n|dn|4

qnσ2
n|dn|2 =

qn|dn|2
σ2

n

. (22)

From (14), we know that the nth component of d can be
expressed as Dn = αn + ∆%n. If we reasonably assume that
∆%n is independent for each mode, the covariance matrix of
d can be given by

CDD = E[(d− E[d])(d− E[d])†]
= diag{σ2

D0
, σ2

D1
, · · · , σ2

DNm−1
}. (23)

If we define Σ = C−
1
2

covCDDC−
1
2

cov , then from (22) and (23), we
know that Σ is full rank. Using the minimum error probability
detector rule in (20), the average BER is [11]:

Pb =
1
π

∫ π
2

0

[
det

(
Σ

sin2θ
+ I

)]−1

e−m†(Σ+sin2
θ I)−1mdθ ,

(24)
where m = C−

1
2

covE[d]. The potential diversity order is given
by Nm.
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Fig. 5. BER and diversity performance in different transmission bands.

The BER numerical results for varying SNR are shown in
Fig. 5. Here we used the environment parameters D = 100

m, c = 1500 m/s and r = 15 km. The numerical results show
the BER and diversity performances of three different types
of receivers: receiver with TF component separation which
is designed in this paper, receiver without TF component
separation which is designed in [2], and receiver without
diversity which is a conventional matched filter. As we can
see, the BER performance of the receiver with the separated
TF components outperforms the other two. This is because this
receiver avoids interference between normal modes. Further-
more, the separation performs the TF denoising of the received
signal, which further improved the SNR.

V. CONCLUSION

We investigated the frequency domain characterization of
shallow water environments and analyzed its dispersive char-
acteristics based on the Pekeris waveguide model. Follow-
ing this model, we developed a new method, based on a
warping technique, for the blind separation of the TF mode-
components, adaptively determining the group velocity curves
and filtering the TF components of the received signal. As an
application example, we developed the corresponding wave-
form and receiver to exploit the diversity existing in the
system characterization. Numerical results demonstrated that
the diversity and BER performances were improved by the
aforementioned receiver design scheme.
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[8] É. Chassande-Mottin and A. Pai, “Best chirplet chain: Near-optimal
detection of gravitational wave chirps,” Physical Review, vol. 73, no.
042003, pp. 1–25, Feb. 2006.

[9] A. Papandreou-Suppappola, “Time-varying processing: Tutorial on prin-
ciples and practice,” in Applications in Time-Frequency Signal Process-
ing (A. Papandreou-Suppappola, ed.). Florida: CRC Press, 2002.

[10] A. L. Maggi and A. J. Duncan, “Underwater acoustic propagation
modelling software,” http://www.cmst.curtin.edu.au/products/actoolbox.

[11] V. Veeravalli, “On performance analysis for signaling on correlated
fading channels,” IEEE Trans. Commun., vol. 49, no. 11, pp. 1879–
1883, Nov. 2001.


