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Abstract—There are several natural constructions of constant II. CAZAC
amplitude zero autocorrelation (off the DC-component) wave- .
forms. We adopt a construction for waveforms of length K, A. Correlations ,
where K is a non-square-free integer. This property of K is Let e;n(n) = e R and Zyg = {0,1,..., K — 1}. Let
used in the derivation of a frequency shifting (Doppler) detection ,, ,, . Zx — C be (discrete)K-periodic waveforms. The
algorithm which we derive. There are number theoretic propeties c;osscorrelationof w andwv is
which account for the properties of this algorithm, as well as

for analogous but different properties in the square-free case. 1 K-1
A variety of relevant examples is given along with the technical Cyn(im)=— u(m + k)o(k)
rationale for the algorithm. K =0

form=0,1,..., K — 1.
The autocorrelationof « is its crosscorelation with itself:
Au(m) = Cyu(m).

) , The (discretepmbiguity functiorof u, A : Zx x Zx — C,
We shall analyze a certain class of unimodular low correlas jafined as

tion waveforms. In fact, the specific waveforms with which we K

deal are of finite length and have 0-autocorrelation off of the . . 1« . 2mimk
i Au(iK) = Cue, () = 52 D ulm + jyu(m)e™*

m=0

I. INTRODUCTION

DC-component. Such waveforms are referred to as CAZAC ~ ™

waveforms, viz., Constant Amplitude Zero Autocorrelation. o ] ]
There is an extensive literature on CAZACs because of tHdS natural to refer tod as the ambiguity function of, since

importance of such waveforms in communications and coditithe usual setting on the real lifis the analogue ambiguity
theory, e.g., [1], [2], [3], [4], [5], [6], [7]. [8], [9]. Our own function is
interest is based on the importance of waveform design in _ Yrrr ) YN 2mit(wtd
several aspects of modern radar [10], [11], [12] . Aut,7) = /@U(w — Ul e B

We begin in Sectiof II-A by defining the autocorrelation _
and crosscorrelation of signals of finite lengih as well as = / u(s + tyu(s)e*™*Vds,
the ambiguity function of a given waveform of finite length. R
It is noted that the usual notion of the ambiguity function owhere U is the Fourier transform of, : R — C, R is R
the real lineR is the analogue of our discrete definition. Irconsidered as the spectral domain, and fenorm (finite
Section[T-B, properties of CAZACs are recorded includingnergy) ofu is designated byjul|».
the important fact that. is CAZAC if and only if its discrete A K-periodic waveformu is a constant amplitude zero
Fourier transformU/ is CAZAC. Some of the CAZACs we autocorrelation waveform(CAZAC) if |u(m)| = 1, m =
have used, and whose software [13] we have made availalolgl, ..., K — 1, and itsautocorrelationA,, (m) is 0 for m =
have the property thak is not square-free, and we give al,..., K — 1.
typical example. i

We recall some RADAR fundamentals in Sectfon IlI, tha?' Properties
we require for our setting and statistic. In particular, we We list a few interesting properties of (discref€}periodic
describe the role of constant amplitude in Secfion JIl-A, zenyaveformsu : Zgx — C.
autocorrelation in Sectidn II[4B and the modulation scheme to« If « has zero autocorrelation off the DC-component
which our CAZACs will be applied in Sectidn Tl[{C. Section (ZAC), then it is of full bandwidth. Moreover, its Fourier
[[V]deals with a pristine form of the Doppler effect, and we  transforma has constant magnitude.
construct a statistic in order to compute frequency shifting « A waveformu has constant amplitude (CA) if and only if
and, therefore, target speed. We state a fundamental theoretical the discrete Fourier TransfornfDFT) of « has the ZAC
result as well as examples, and conclude in Segtipn V. property.



o u is CAZAC if and only if its DFT is also CAZAC. (r is for "receive™). There are many factors that affect the

Generally, there are distinct CAZAC waveforms of angonstant of proportionality in this form of the RADAR equa-
given lengthK, and different constructions of CAZACs maytion, including the target’s cross sectional area, geometry, and
yield different applicability. Figurg]1 provides an example omaterial reflective properties, as well as losses associated with
a CAZAC with length 75. In particular, CAZAC waveformsthe propagation medium. However, the crucial factor remains
are broadband, and the best finite energy approximants thg inverse fourth power dependence on the emitted signal
waveforms of smaller bandwidth are productsidfy charac- strength. This shows that range is crucially dependent on the
teristic functions. The relation of these properties to RADARMount of energy transmitted to illuminate the scene during

is explained in Sectior] TiI. 71. Thus, it is glso important to maximize not only thg power
of the transmitted wave pulse, and hence its amplitude, but
1. RADAR FUNDAMENTALS also the total energy carried by it into the scene, and hence

The principle underlying the object detection method Witﬁ]e length ofry. _ ) )
pulsed RADAR is quite elementary — it asserts that detectingTherefore’ for a given noise power level, constant amphtut_je
a reflection of an electromagnetic wave pulse signifies tN\@veforms havg the advantage of extgndmg the detection
presence of an obstacle in the wave's propagation path whl@hge over amplitude modula’lteq ones. Thisis becagse coqstant
caused the reflection. Since the speed of the wave puls@‘rigp“tUde wave pu_Ises maximize the power received, since
constant and equal to the speed of lightthe time delay they can be transmitted at peak power, as opposed to variable

between the original pulse transmission and the detection of?@p”tUde ones. At the same time, the total energy transmitted

reflection by the RADAR antenna is equal to the time it takes'%theI |r;tegral of power Iover time. Thus, all other things being
light particle to travel twice the distance between antenna afigual, longer wave pulses carry more energy |nto' a scene.
ce, they allow returns from farther away to remain clearly

target. Thus, the distance to the target can be estimated to 't h i lovel
extent that this time delay can accurately and unambiguou&g°ve the noise power levels.

be measured. B. Matched filtering and the ambiguity function

In the following, we shall recall some of the issues asso- The disadvantage of using simple pulses comes from the

ciated with this measurement, in order to motivate the neggnstraints they introduce in range resolution. Let us assume

for sophisticated waveform design in RADAR. We shall als&dat the pulse transmitted is given by the functieft) —

?r:ggfﬁsmi; 2225'? S]f;eﬁzeznfir?ﬁg'g:{;ﬂaﬁgr?s;;?lz Zi_gm, the characteristic function of the transmission interval.
P y 98 Rirther assume that the reflection comes from a single point

speed relative to the source. target, located at a distande Then the return signal has the

A. Constant Amplitude form

_ ) r(t) =as(t—T),
The simplest form of pulsed RADAR can be described as

follows: An RF wave of frequency is transmitted for a time where the delayf” is related to the distanaéby the speed of
period ;, after which the antenna monitors for its return folight ¢ via ¢ = Q—Td, anda > 0 is an attenuation factor. It can
another time interval,. The pulse repetition interval (PRI)be shown that
T + T2 represents a single cycle in the operation of the pulse

RADAR. Clearly, we must have;, < 75 in order to be

able to process the return completely. More importantly, Yvhere C,. is L*(R) crosscorrelation, and the maximum
al T8 Ll

must be long enough to allow for signals to return from Il stem response is aiven by theatched filtersA*( ) =
targets within the RADAR’s range in the same PRI that the(}%e_%ﬁg 9 y V=

originated.
Another constraint on the length ef comes from energy fu

: . T ction of the transmission interval, 6. (¢)| is a tent
considerations. For the sake of simplicity, let us assume that _. SN .
L : - unction centered af’. In the presence of additive Gaussian
an omnidirectional source antenna A is emitting an electro-

. . white noise, while the matched filter* still achieves the
magngtl_c wave of constant powét, from a ppmt Iocatgd at maximum signal-to-noise ratiosup, |C,. s(t)| is no longer
the origin ( is for "send”). Now let us consider a Statlonaryguaranteed t0 be exactly &t Thus thaﬁ only be determined
target B at a distanc& from the origin. Since the antenna iSto be in the range wher&’ (t)|' remains above the noise
omnidirectional, wave energy is distributed evenly over ﬂﬁreshold and this is an ir:iserval aroufilwhose length is
surface of the sphere of radiu8, and hence the received '

. . . proportional tor;.
power P; at the target B is inversely proportional & (¢ is .
for "target”). The target then acts as a secondary source withThUS’ the shape of the graph k.. (t) determines the

P e : ?recision with which an estimate of the time of return can
power I ~ 7, emitting reflected waves that arrive back e measured, and this is directly proportional to the precision
the source. Thus, the powét. received back at the point A ’

i of the measurement of the target's distance. Equivalently,
P, P one considers the autocorrelatiagn (¢). The types of signals
~“m2 " Rm whose autocorrelation decays rapidly away from the DC

CT’S(T) = Sltlp |Cr,8(t)|a

In the setting we have discussed so fas the characteristic

P,



component and remains small away from it provide the bgstocess (usingin(27ift)) is applied to recover the quadrature
localization. component. Thus, the full original signalis recovered.

What is remarkable about CAZAC sequences is that theyln digital systems, modulation and subsequent demodulation
provide explicit examples where the autocorrelation is prere performed at regularly sampled time intervals. Typically,
cisely equal to zero away from the DC component. This meatie carrier wave frequency is in the order of GHz, and the
that, in the discrete case, we can achieve the best localizattampling rates are in the order of MHz. This implies that
possible. In the next subsection, we explain how to encollecomes a step function
these signals using quadrature amplitude modulation. o(t) ZH[m]lfm 0),

C. Quadrature amplitude modulation and demodulation

In general, the transmitted pulse consists of a signal Where the step intervalg,, = [0, 7t] + m7 have a size of
R — C modulated by an RF wave(t) = exp(2mift), of approximately 1000 carrier cycles.
constant frequenc;f, called the carrigr wave. Notice tha}t the IV. DOPPLER STATISTIC
complex exponential form of the carrier wave refers to its full
electromagnetic behavior; it is a cosine of frequelidy terms A. Doppler effect
of electric current. Here, we assume that the funcii¢fy is ~ The most basic form of the Doppler effect states that the

supported on the interval, and write wavelength of a pure sinusoidal wave as measured by a
‘ receiver varies according to the relative speed of the receiver
u(t) = A(t)exp(2mif(t)) to the source. If\, denotes the wavelength as measured by
A(t) cos(2m0(t)) + 1 A(t)sin(2m0(t)), a receiver moving towards the source at a constant speed
then
where non-negativel : R — R is the signal amplitude and Ao ctw
6 :R — T is its phase. The real part A ¢
I = A(t) cos(2m0(t)) This is justified if one considers that the time it takes for

a moving receiver to traverse a full wavelength is shortened
of u is called the in-phase component, and the imaginary pa# its speed relative to the traveling wave (as opposed to the

stationary receiver). Equivalently,
Q = A()sin(270(t)) = A(t) cos(2m(t) + ) Y ) Ed Y
2 fv - fO _v
is the quadrature component. These components are multiplied fo ¢

with two RF waves that are in quadrature phase, narm:f/'\)ﬁereﬁ, = Ai is the measured frequency. The same reason-
cos(2r ft) and sin(27 ft), and then summed to produce th(?ng carries through when one considers moving sources and
modulated signal

stationary targets, as only relative speed matters. Thus, in the

s(t) = A(t)cos(2m0(t)) cos(27 ft) case of RADAR, when a signal is reflected off of a moving
+ A(t)sin(270(t)) sin(2m ft) target, we expect to see its frequency shifted by
= A(t)cos{2mi(ft — 0(t))}. fo = Z%f
Again, the full electromagnetic model for the transmitted wave We are going to focus on a single return, from a single point
is target, located at a distandeand traveling at a speadalong
s(t) = exp{2mi(ft — 6(¢)}. the line of sight of the radar. In this idealized situation, the

. . . . received signal can be modeled as
Hence, the phase information af is encoded in the

transmitted signal as a phase delay. Assuming thas r(t) = s(t — T)exp(—2mifp(t —T)),
differentiable, we see that the instantaneous frequency of fige o 7 _ 21 is the time delay, andiy — 22f s the
u wave | W+ 0, : plitude 1s1. Since frequency shift due to the Doppler effect.
constant amplitude pulses are preferable, we shall limit our
discussion to unitary signails (A = 1). B. CAZAC statistic
Quadrature modulated signals can be demodulated usingn the digital case, we are led to examine the properties of
a parallel process for recovering the | and Q componeniss discrete ambiguity functiod,, (4, k) = Cly.ue, (), Where;
separately and then adding them together. First, the original fsrresponds to the time delay ahdorresponds to the Doppler
phase quadrature componet(2mift) is used to modulate gpift.
the received signal There is a fundamentdDoppler tolerance problemcon-
B = (1) cos(2mi Ft) — cos(2mi i oi( ft — O(1)), struct a statistic to determine an unknown Doppler frequency
r(t) = r(t) cos(2mift) = cos(2mift) cos{2mi(f ) shift. In order to address this problem we have the following
and then the resulting wave is filtered with an appropriatesult which is valid for certain subclasses of non-square-free
sinc function to cut off the harmonics abovye A similar integers [14].



Theorem 1l:Let K = M xNxN andletk =0,1,..., K—
1. The quantity|C,, .., (-)| is N-periodic as a function of,
i.e., there are at mosyY different graphs ofC,, y., (-)|. Also,
givenk, |Cy, ue, ()| = Oforall j # (—k) mod MN. Further, : A g " A
S o 1Cue, ()2 = 1. . » . . = a

This theorem translates to the fact that the discrete am . .
guity function A,, is mostly supported on a single point wher . . . .
restricted to lines corresponding to constantwherek is a 0[wees . i
given Doppler shift. Hence, range resolution remains optim
in the presence of Doppler effects. It also follows from th 1t
theorem that the values at the sidelobes remain below a fi
threshold, depending off” alone (Fig[P). 2| 505 5.5

There are different CAZAC constructions that lead to di o e . N . e
ferent peak sidelobe values (Figl 3). Figure 3(c) shows - . - ‘ . . . ,
CAZAC u for which the support ofA4, is a single point
when restricted to lines corresponding to constantk a
given Doppler shift), and similarly for constayit(j a given Frig 1. A discrete CAZAC signal of length 75; the graph plots the phase in
time shift). This flexibility allows us to construct a library ofradians.

CAZAC waveforms for scheduling purposes.

One particular application is the case of using a conjugate . _ . o
pair of CAZACs. v and@. Note that the ambiguity function [5] U. H. Rohrs and L. P. Linde, “Some unique properties and applications
! ' of perfect squares minimum phase cazac sequencestdn. South

of u satisfies African Symp. on Communications and Signal Processi$2, pp.
|Az(j, k)| = [Au(=3, F)]- 155-160. . . .
[6] R. Turyn, Sequences with small correlationsNew York: John Wiley
Hence, the functionAz||A.| (j,%) is localized at a single & Sons, Inc., 1968, pp. 195-228.

_ . [7] J. Ng, K. Letaief, and R. Murch, “Complex optimal sequences with
point in the time-frequency plane. constant magnitude for fast channel estimation initializatidEEE

Transactions on Communicatigneol. 46, no. 3, pp. 305-308, 1998.

V. CONCLUSION [8] E. Gabidulin and V. Shorin, “Unimodular perfect sequences of length
We have presented results on a certain class of unimodular # - IEEE Transactions on Information Theorol. 51, no. 3, pp. 1163—

low gorrelation Waveforms,_called CAZAC, viz., Constantig] w. H. Mow, “A new unified construction of perfect root-of-unity
Amplitude Zero Autocorrelation (off the DC component). We  sequences,” ifEEE 4th International Symposium on Spread Spectrum

: P P Techniques and Applicationsol. 3, Sep 1996, pp. 955-959.
provided motivation from the theory of digital pulsed RADAR’[10] J. R. Klauder, “The design of radar signals having both high range

and constructed a Doppler statisti€’, .., (j)| in order to resolution and high velocity resolutiorBell System Technical Journal
compute frequency shifting and, therefore, target speed. This vol. 39, pp. 809-820, 1960.

T ; ] J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, “The
statistic is not only elementary to explain, but also prOVégL theory and design of chirp radarsBell System Technical Journal

useful and accurate. Note that if one graphs didyA(j, k) = vol. 39, pp. 745-808, 1960.
Re Cy ve,, (7) then the statistic sometimes fails. We have stat¢tR] N. Levanon and E. MozesoRadar Signals Wiley, 2004.

; ; ; ] J. J. Benedetto and J. F. Ryan, “Software package for CAZAC code
a fundamental theoretical result in this respect, as well s generators and Doppler shift analysis.” 2004, vww, math.Grc-all

provided examples to illuminate our results. Further, we point cazac.

out that there are unresolved “arithmetic” complexities whici4] J. J. Benedetto and J. Donatelli, “A doppler statistic associated with low
are affected by waveform structure and length; and that our correlation waveforms of finite length.”

noise analysis is ongoing.
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Fig. 2. Doppler statistic for the CAZAC in Fig]1; (a) -
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Scatter plot of the discrete ambiguity functieh,(k,j) in the

(e) graphs of(k j) time—frequency plane; points have radii proportional to the value of

Au(k, j)|. (a) -

(c): u are CAZAC sequences of lengths 128, 72, and 75,

respectlvely
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