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Abstract— There are several natural constructions of constant
amplitude zero autocorrelation (off the DC-component) wave-
forms. We adopt a construction for waveforms of length K,
where K is a non-square-free integer. This property of K is
used in the derivation of a frequency shifting (Doppler) detection
algorithm which we derive. There are number theoretic propeties
which account for the properties of this algorithm, as well as
for analogous but different properties in the square-free case.
A variety of relevant examples is given along with the technical
rationale for the algorithm.

I. I NTRODUCTION

We shall analyze a certain class of unimodular low correla-
tion waveforms. In fact, the specific waveforms with which we
deal are of finite length and have 0-autocorrelation off of the
DC-component. Such waveforms are referred to as CAZAC
waveforms, viz., Constant Amplitude Zero Autocorrelation.
There is an extensive literature on CAZACs because of the
importance of such waveforms in communications and coding
theory, e.g., [1], [2], [3], [4], [5], [6], [7], [8], [9]. Our own
interest is based on the importance of waveform design in
several aspects of modern radar [10], [11], [12] .

We begin in Section II-A by defining the autocorrelation
and crosscorrelation of signals of finite lengthK, as well as
the ambiguity function of a given waveform of finite length.
It is noted that the usual notion of the ambiguity function on
the real lineR is the analogue of our discrete definition. In
Section II-B, properties of CAZACs are recorded including
the important fact thatu is CAZAC if and only if its discrete
Fourier transformU is CAZAC. Some of the CAZACs we
have used, and whose software [13] we have made available,
have the property thatK is not square-free, and we give a
typical example.

We recall some RADAR fundamentals in Section III, that
we require for our setting and statistic. In particular, we
describe the role of constant amplitude in Section III-A, zero
autocorrelation in Section III-B and the modulation scheme to
which our CAZACs will be applied in Section III-C. Section
IV deals with a pristine form of the Doppler effect, and we
construct a statistic in order to compute frequency shifting
and, therefore, target speed. We state a fundamental theoretical
result as well as examples, and conclude in Section V.

II. CAZAC

A. Correlations

Let em(n) = e
−2πimn

K and ZK = {0, 1, . . . ,K − 1}. Let
u, v : ZK → C be (discrete)K-periodic waveforms. The
crosscorrelationof u andv is

Cu,v(m) =
1
K

K−1∑
k=0

u(m + k)v(k)

for m = 0, 1, . . . ,K − 1.
The autocorrelationof u is its crosscorelation with itself:

Au(m) = Cu,u(m).
The (discrete)ambiguity functionof u, A : ZK ×ZK → C,

is defined as

Au(j, k) = Cu,uek
(j) =

1
K

K−1∑
m=0

u(m + j)u(m)e
2πimk

K .

It is natural to refer toA as the ambiguity function ofu, since
in the usual setting on the real lineR, the analogue ambiguity
function is

Au(t, γ) =
∫

bR U(ω − γ

2
)U(ω +

γ

2
)e2πit(ω+ γ

2 )dω

=
∫

R
u(s + t)u(s)e2πisγds,

where U is the Fourier transform ofu : R → C, R̂ is R
considered as the spectral domain, and theL2 norm (finite
energy) ofu is designated by‖u‖2.

A K-periodic waveformu is a constant amplitude zero
autocorrelation waveform(CAZAC) if |u(m)| = 1, m =
0, 1, . . . ,K − 1, and itsautocorrelationAu(m) is 0 for m =
1, . . . ,K − 1.

B. Properties

We list a few interesting properties of (discrete)K-periodic
waveformsu : ZK → C.

• If u has zero autocorrelation off the DC-component
(ZAC), then it is of full bandwidth. Moreover, its Fourier
transformû has constant magnitude.

• A waveformu has constant amplitude (CA) if and only if
the discrete Fourier Transform(DFT) of u has the ZAC
property.



• u is CAZAC if and only if its DFT is also CAZAC.

Generally, there are distinct CAZAC waveforms of any
given lengthK, and different constructions of CAZACs may
yield different applicability. Figure 1 provides an example of
a CAZAC with length 75. In particular, CAZAC waveforms
are broadband, and the best finite energy approximants by
waveforms of smaller bandwidth are products ofû by charac-
teristic functions. The relation of these properties to RADAR
is explained in Section III.

III. RADAR FUNDAMENTALS

The principle underlying the object detection method with
pulsed RADAR is quite elementary – it asserts that detecting
a reflection of an electromagnetic wave pulse signifies the
presence of an obstacle in the wave’s propagation path which
caused the reflection. Since the speed of the wave pulse is
constant and equal to the speed of lightc, the time delay
between the original pulse transmission and the detection of its
reflection by the RADAR antenna is equal to the time it takes a
light particle to travel twice the distance between antenna and
target. Thus, the distance to the target can be estimated to the
extent that this time delay can accurately and unambiguously
be measured.

In the following, we shall recall some of the issues asso-
ciated with this measurement, in order to motivate the need
for sophisticated waveform design in RADAR. We shall also
discuss the Doppler effect, and additional constraints and
trade-offs imposed by the need for the estimation of a target’s
speed relative to the source.

A. Constant Amplitude

The simplest form of pulsed RADAR can be described as
follows: An RF wave of frequencyf is transmitted for a time
period τ1, after which the antenna monitors for its return for
another time intervalτ2. The pulse repetition interval (PRI)
τ1 + τ2 represents a single cycle in the operation of the pulse
RADAR. Clearly, we must haveτ1 < τ2 in order to be
able to process the return completely. More importantly,τ2

must be long enough to allow for signals to return from all
targets within the RADAR’s range in the same PRI that they
originated.

Another constraint on the length ofτ1 comes from energy
considerations. For the sake of simplicity, let us assume that
an omnidirectional source antenna A is emitting an electro-
magnetic wave of constant powerPs from a point located at
the origin (s is for ”send”). Now let us consider a stationary
target B at a distanceR from the origin. Since the antenna is
omnidirectional, wave energy is distributed evenly over the
surface of the sphere of radiusR, and hence the received
powerPt at the target B is inversely proportional toR2 (t is
for ”target”). The target then acts as a secondary source with
power Pt ∼ Ps

R2 , emitting reflected waves that arrive back at
the source. Thus, the powerPr received back at the point A
is

Pr ∼
Pt

R2
∼ Ps

R4

(r is for ”receive”). There are many factors that affect the
constant of proportionality in this form of the RADAR equa-
tion, including the target’s cross sectional area, geometry, and
material reflective properties, as well as losses associated with
the propagation medium. However, the crucial factor remains
the inverse fourth power dependence on the emitted signal
strength. This shows that range is crucially dependent on the
amount of energy transmitted to illuminate the scene during
τ1. Thus, it is also important to maximize not only the power
of the transmitted wave pulse, and hence its amplitude, but
also the total energy carried by it into the scene, and hence
the length ofτ1.

Therefore, for a given noise power level, constant amplitude
waveforms have the advantage of extending the detection
range over amplitude modulated ones. This is because constant
amplitude wave pulses maximize the power received, since
they can be transmitted at peak power, as opposed to variable
amplitude ones. At the same time, the total energy transmitted
is the integral of power over time. Thus, all other things being
equal, longer wave pulses carry more energy into a scene.
Hence, they allow returns from farther away to remain clearly
above the noise power levels.

B. Matched filtering and the ambiguity function

The disadvantage of using simple pulses comes from the
constraints they introduce in range resolution. Let us assume
that the pulse transmitted is given by the functions(t) =
1[0,τ1], the characteristic function of the transmission interval.
Further assume that the reflection comes from a single point
target, located at a distanced. Then the return signal has the
form

r(t) = as(t− T ),

where the delayT is related to the distanced by the speed of
light c via c = 2d

T , anda > 0 is an attenuation factor. It can
be shown that

Cr,s(T ) = sup
t
|Cr,s(t)|,

where Cr,s is L2(R) crosscorrelation, and the maximum
system response is given by thematched filter ŝ?(γ) =
aŝ(γ)e−2πiTγ .

In the setting we have discussed so far,s is the characteristic
function of the transmission interval, so|Cr,s(t)| is a tent
function centered atT . In the presence of additive Gaussian
white noise, while the matched filter̂s? still achieves the
maximum signal-to-noise ratio,supt |Cr,s(t)| is no longer
guaranteed to be exactly atT . Thus,T can only be determined
to be in the range where|Cr,s(t)| remains above the noise
threshold, and this is an interval aroundT whose length is
proportional toτ1.

Thus, the shape of the graph ofCr,s(t) determines the
precision with which an estimate of the time of return can
be measured, and this is directly proportional to the precision
of the measurement of the target’s distance. Equivalently,
one considers the autocorrelationAs(t). The types of signals
whose autocorrelation decays rapidly away from the DC



component and remains small away from it provide the best
localization.

What is remarkable about CAZAC sequences is that they
provide explicit examples where the autocorrelation is pre-
cisely equal to zero away from the DC component. This means
that, in the discrete case, we can achieve the best localization
possible. In the next subsection, we explain how to encode
these signals using quadrature amplitude modulation.

C. Quadrature amplitude modulation and demodulation

In general, the transmitted pulse consists of a signalu :
R → C modulated by an RF wavew(t) = exp(2πift), of
constant frequencyf , called the carrier wave. Notice that the
complex exponential form of the carrier wave refers to its full
electromagnetic behavior; it is a cosine of frequencyf in terms
of electric current. Here, we assume that the functionu(t) is
supported on the intervalτ1, and write

u(t) = A(t)exp(2πiθ(t))
= A(t) cos(2πθ(t)) + iA(t)sin(2πθ(t)),

where non-negativeA : R → R is the signal amplitude and
θ : R → T is its phase. The real part

I = A(t) cos(2πθ(t))

of u is called the in-phase component, and the imaginary part

Q = A(t)sin(2πθ(t)) = A(t) cos(2πθ(t) +
π

2
)

is the quadrature component. These components are multiplied
with two RF waves that are in quadrature phase, namely
cos(2πft) and sin(2πft), and then summed to produce the
modulated signal

s(t) = A(t) cos(2πθ(t)) cos(2πft)
+ A(t)sin(2πθ(t))sin(2πft)

= A(t)cos{2πi(ft− θ(t))}.

Again, the full electromagnetic model for the transmitted wave
is

s(t) = exp{2πi(ft− θ(t)}.

Hence, the phase information ofu is encoded in the
transmitted signal as a phase delay. Assuming thatθ is
differentiable, we see that the instantaneous frequency of the
modulated wave is nowf + θ′, and its amplitude isA. Since
constant amplitude pulses are preferable, we shall limit our
discussion to unitary signalsu (A = 1).

Quadrature modulated signals can be demodulated using
a parallel process for recovering the I and Q components
separately and then adding them together. First, the original in-
phase quadrature componentcos(2πift) is used to modulate
the received signal

r(t) = r(t) cos(2πift) = cos(2πift) cos{2πi(ft− θ(t))},

and then the resulting wave is filtered with an appropriate
sinc function to cut off the harmonics abovef . A similar

process (usingsin(2πift)) is applied to recover the quadrature
component. Thus, the full original signalu is recovered.

In digital systems, modulation and subsequent demodulation
are performed at regularly sampled time intervals. Typically,
the carrier wave frequency is in the order of GHz, and the
sampling rates are in the order of MHz. This implies thatθ
becomes a step function

θ(t) =
∑
m

θ[m]1Im
(t),

where the step intervalsIm = [0, τ1
K ] + m τ1

K have a size of
approximately 1000 carrier cycles.

IV. D OPPLER STATISTIC

A. Doppler effect

The most basic form of the Doppler effect states that the
wavelength of a pure sinusoidal wave as measured by a
receiver varies according to the relative speed of the receiver
to the source. Ifλv denotes the wavelength as measured by
a receiver moving towards the source at a constant speedv,
then

λ0

λv
=

c + v

c
.

This is justified if one considers that the time it takes for
a moving receiver to traverse a full wavelength is shortened
by its speed relative to the traveling wave (as opposed to the
stationary receiver). Equivalently,

fv − f0

f0
=

v

c
,

wherefv = 1
λv

is the measured frequency. The same reason-
ing carries through when one considers moving sources and
stationary targets, as only relative speed matters. Thus, in the
case of RADAR, when a signal is reflected off of a moving
target, we expect to see its frequency shifted by

fD = 2
v

c
f

We are going to focus on a single return, from a single point
target, located at a distanced and traveling at a speedv along
the line of sight of the radar. In this idealized situation, the
received signal can be modeled as

r(t) = s(t− T )exp(−2πifD(t− T )),

where T = 2d
c is the time delay, andfD = 2 v

c f is the
frequency shift due to the Doppler effect.

B. CAZAC statistic

In the digital case, we are led to examine the properties of
the discrete ambiguity functionAu(j, k) = Cu,uek

(j), wherej
corresponds to the time delay andk corresponds to the Doppler
shift.

There is a fundamentalDoppler tolerance problem: con-
struct a statistic to determine an unknown Doppler frequency
shift. In order to address this problem we have the following
result which is valid for certain subclasses of non-square-free
integers [14].



Theorem 1:Let K = M×N×N and letk = 0, 1, . . . ,K−
1. The quantity|Cu,uek

(·)| is N -periodic as a function ofk,
i.e., there are at mostN different graphs of|Cu,uek

(·)|. Also,
givenk, |Cu,uek

(j)| = 0 for all j 6= (−k) mod MN . Further,∑K−1
j=0 |Cu,uek

(j)|2 = 1.
This theorem translates to the fact that the discrete ambi-

guity functionAu is mostly supported on a single point when
restricted to lines corresponding to constantk, wherek is a
given Doppler shift. Hence, range resolution remains optimal
in the presence of Doppler effects. It also follows from the
theorem that the values at the sidelobes remain below a fixed
threshold, depending onK alone (Fig. 2).

There are different CAZAC constructions that lead to dif-
ferent peak sidelobe values (Fig. 3). Figure 3(c) shows a
CAZAC u for which the support ofAu is a single point
when restricted to lines corresponding to constantk (k a
given Doppler shift), and similarly for constantj (j a given
time shift). This flexibility allows us to construct a library of
CAZAC waveforms for scheduling purposes.

One particular application is the case of using a conjugate
pair of CAZACs,u and u. Note that the ambiguity function
of u satisfies

|Au(j, k)| = |Au(−j, k)| .

Hence, the function|Au| |Au| (j, k) is localized at a single
point in the time-frequency plane.

V. CONCLUSION

We have presented results on a certain class of unimodular
low correlation waveforms, called CAZAC, viz., Constant
Amplitude Zero Autocorrelation (off the DC component). We
provided motivation from the theory of digital pulsed RADAR,
and constructed a Doppler statistic|Cu,uek

(j)| in order to
compute frequency shifting and, therefore, target speed. This
statistic is not only elementary to explain, but also proves
useful and accurate. Note that if one graphs onlyReA(j, k) =
ReCu,uek

(j) then the statistic sometimes fails. We have stated
a fundamental theoretical result in this respect, as well as
provided examples to illuminate our results. Further, we point
out that there are unresolved “arithmetic” complexities which
are affected by waveform structure and length; and that our
noise analysis is ongoing.
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Fig. 2. Doppler statistic for the CAZAC in Fig. 1; (a) - (e) graphs of
|Cu,uek (·)| for k = 1, . . . , 5, respectively.

(a)

(b)

(c)

Fig. 3. Scatter plot of the discrete ambiguity functionAu(k, j) in the
(k, j) time–frequency plane; points have radii proportional to the value of
|Au(k, j)|. (a) - (c): u are CAZAC sequences of lengths 128, 72, and 75,
respectively.
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