
SLOW-TIME MULTI-FREQUENCY RADAR FOR TARGET DETECTION IN MULTIPATH SCENARIOS

Satyabrata Sen and Arye Nehorai

Department of Electrical and Systems Engineering,
Washington University in St. Louis,

St. Louis, MO 63130, USA.
e-mail: {ssen3, nehorai}@ese.wustl.edu.

ABSTRACT
We propose a method to detect a target in the presence of multipath
reflections, employing sequential transmission of multiple frequen-
cies in a slow-time (pulse-to-pulse) approach. First, we develop
a parametric measurement model that accounts for the multipath
components at multiple frequencies as well as Doppler shifts. Then,
we develop a statistical detection test and analytically evaluate its
performance characteristics. Based on the performance analysis, we
propose an adaptive algorithm to select the best combination from
a subset of frequencies that maximizes the detection performance.
Our numerical examples show that the sequential approach requires
more coherent pulses to match the performance of the simultaneous
usage of multiple carriers in OFDM format. We also study the
extent of performance degradation due to employing a subset of
available frequencies.

Index Terms— Slow time, multi-frequency radar, multipath
reflection, target detection, generalized likelihood ratio test.

I. INTRODUCTION

The problem of detection and tracking targets in the presence of
multipath has been considered challenging in the radar community
for many years. Conventional radar systems try to suppress the
multipath reflections by treating them as interference (or clutter).
However, a proper exploitation of multipath propagation can im-
prove the radar performance [1], [2]. Each multipath component
provides an extra “look” at the target and is affected by a different
Doppler shift corresponding to the projection of the target velocity
on the direction-of-arrival (DOA) vector, and thus improves the
target detection capability.

To resolve and exploit the multipath components, in [2] we
considered a wideband orthogonal frequency division multiplexing
(OFDM) signalling scheme [3]. Although OFDM has been elab-
orately studied and commercialized in the digital communication
field [4], it has not so widely been studied by the radar community
apart from a few recent efforts [5]-[7]. One of major reasons
of such unpopularity is that OFDM has a time-varying envelope
and that originates a potentially high peak-to-average power ratio
(PAPR) [8].

Over the years a number of approaches have been proposed to
reduce the PAPR problem and a comprehensive survey of those
techniques can be found in [8], [9, Ch. 6]. However, these tech-
niques suggest modifications to the OFDM signal over “fast time”
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(within a pulse). Instead, here we propose to use a “slow-time”
(pulse-to-pulse) approach in which only one of subcarriers (which
certainly has constant envelope) is employed over a particular pulse.
This approach is similar to the slow frequency-hop technique [10],
in which different subcarriers are transmitted in a sequential manner
instead of a simultaneous transmission as in OFDM.

In Section II, we develop the measurement model that accounts
for the specular multipath reflections, under the generalized mul-
tivariate analysis of variance (GMANOVA) framework [11], [12].
Based on this model, in Section III, we formulate the detection
problem and employ the generalized likelihood ratio (GLR) test [13,
Ch. 6]. We analytically evaluate the performance the GLR test
statistics under both hypotheses. In Section IV, we propose an
adaptive design algorithm to select the best combination from a
subset of frequencies that maximizes the detection performance.
Numerical examples and conclusions are presented in Section V
and VI, respectively. We find that for the same transmitting energy
per pulse the sequential approach requires more coherent pulses to
match the performance of its simultaneous version.

II. PROBLEM DESCRIPTION AND MODELING

We consider a far-field point target moving with a constant
relative velocity v in a multipath-rich environment. At the operating
frequency we assume that the reflecting surfaces only produce
first-order specular reflections of the radar signal. We assume that
for every range cell the radar knows the number of possible mul-
tipath (P ) between the radar and target and the DOA unit-vectors
(up, p = 0, 1, . . . , P − 1) along each such path. Under this
scenario, we first introduce the parametric measurement model for
a sequential transmission of multiple frequencies. Then, we discuss
our statistical assumptions on the noise and interference.

II-A. Measurement Model

We consider a radar operating with a bandwidth of B Hz and
pulse duration of T seconds. It employs L different carrier fre-
quencies, each of which can be represented as s(t) = e j2πl(n)Δft,
where l(n) ∈ {0, 1, . . . , L−1} is the index of the carrier transmit-
ted during the n-th pulse, n = 0, 1, . . . , N−1 denote the slow-time
indices, N is the number of temporal measurements within a given
coherent processing interval (CPI), Δf = 1/T = B/(L + 1)
(similar to the OFDM signal model of [2]), and t represents fast
time.

Then, the complex envelope of the received signal corresponding
to a specific range cell containing the target is given by

y(t) =
P−1∑
p=0

xl(n)p e−j2πfcτp e j2πl(n)Δf(t−τp) e j2πfcβpt + e(t), (1)
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where xl(n)p is a complex quantity representing the scattering
coefficient of the target along l(n)-th carrier and p-th path, τp

and βp = 2〈v, up〉/c are the roundtrip delay and Doppler shift,
respectively, along the p-th path, c is the speed of propagation, and
e(t) is the additive measurement noise. Here we have implicitly
assumed that all the multipath delayed signals from the target lie
within the range cell under consideration. In addition, we assume
that |τi − τj | � τ0 for i, j = 0, 1, . . . , P − 1. These assumptions
can be justified in systems where the path lengths of multipath
arrivals differ little (e.g., narrow urban canyon where the range is
much greater than the width).

Moreover, the information of the roundtrip delays can be in-
corporated into the model by choosing t = τ + nT

PRI
, where

T
PRI

is the pulse repetition interval (PRI). Hence, noticing that
e j2πl(n)ΔfnT

PRI = 1, we can simplify (1) to

y(n) = x
T
l(n)φ(n, η) + e(n), (2)

where xl(n) =
[
xl(n)0, xl(n)1, . . . , xl(n)P−1

]T
, φ(n, η) =

e−j2πfcτ ·
[
e j2πfcβ0(τ+nT

PRI
), . . . , e j2πfcβP−1(τ+nT

PRI
)
]T

, and
η represents the unknown target-velocity components.

Now, suppose we opt for an ordered sequential transmission
scheme in which the first carrier frequency is used in the first
pulse, the second carrier frequency in second pulse, and so on. For
example, with L = 4 we employ l(n) = 0, 1, 2, 3 for n = 0, 1, 2, 3,
respectively. We repeat again in the same way stating with the first
carrier frequency in (L + 1)-th pulse. Thus, here we make a small
assumption that N/L is a positive integer, which is very simple to
implement. We concatenate all the temporal data columnwise into
an 1 × N row vector, keeping the similarity with [2, Eq. 5], to
obtain the measurement model

y
T = x

T
Φ(η) + e

T , (3)

where y = [y(0), . . . , y(N − 1)]T , x =
[
xT

l(0), . . . , x
T
l(N−1)

]T
,

Φ =
[
Φ0:L−1 · · · ΦN−L−2:N−1

]
with Φ0:L−1 =

blkdiag (φ(0, η), φ(1, η), . . . , φ(L− 1, η)).
Next, we choose a random sequential transmission scheme in

which all the L carrier frequencies are used in the first L pulses in
a random manner without any repetition. For example, with L = 4
we may have {l(n) = 2, 1, 3, 0} for n = 0, 1, 2, 3, respectively.
Then, for each of the next sets of L pulses we follow this same
random transmission scheme. To incorporate this random scheme
into (3) we need to post-multiply the scattering vector x with
an LP × LP block-permutation matrix. For example, with the
above-mentioned random scheme {l(n) = 2, 1, 3, 0} we select the
block-permutation matrix as

P =

⎡
⎢⎢⎣

0 0 0 IP

0 IP 0 0

IP 0 0 0

0 0 IP 0

⎤
⎥⎥⎦ , (4)

where IP is an identity matrix of dimension P . Then, a modified
form of (3) can be written as

y
T = x

T
PΦ(η) + e

T = x
T
Φ̃(η) + e

T , (5)

where Φ̃(η) = PΦ(η). (5) reduces to (3) when P = ILP .

II-B. Statistical Assumptions

We assume that e(n) is temporally white and circularly symmet-
ric zero-mean complex Gaussian random variable with unknown
variance σ2. Therefore, the measurements are distributed as

y
T ∼ CN1,N

(
x

T
Φ̃(η), σ2IN

)
. (6)

III. DETECTION TEST

In this section, we first develop a statistical detection test for the
model presented in Section II-A, and then we analytically derive the
performance characteristics of the test. We construct the decision
problem to choose between two possible hypotheses H0 (target-free
hypothesis) and H1 (target-present hypothesis) as{ H0 : x = 0, σ2 unknown

H1 : x �= 0, η, σ2 unknown
(7)

Because of the lack of knowledge about η and σ2 we use the
generalized likelihood ratio (GLR) test [13, Ch. 6] in which the
unknown parameters are replaced with their maximum likelihood
estimates (MLE).

III-A. GLR Test

When the parameter η in (5) is known, the GLR test compares
the ratio of the likelihood functions under the two hypotheses with
a threshold as follows [13, Ch. 6.4.2]:

GLR(η) =
fH1

(y; η, x̂, σ̂2
1)

fH0
(y; σ̂2

0)

H1

>
γ, (8)

where fH0
and fH1

are the likelihood functions under H0 and
H1, σ̂2

0 and σ̂2
1 are the MLEs of σ2 under H0 and H1, x̂ is

the MLE of x under H1, and γ is the detection threshold. After
some algebraic manipulations [12], it can be shown that x̂

T (η) =

yT
Φ̃(η)H

(
Φ̃(η)Φ̃(η)H

)−
and

1

GLR(η)
=

yT
Π1(η)y∗

yT Π1(η)y∗ + yT Π2(η)y∗
, (9)

where Π1(η) = IN − Π2(η) and Π2(η) =

Φ̃(η)H
(
Φ̃(η)Φ̃(η)H

)−
Φ̃(η) are two projection matrices

orthogonal to each other. In case of unknown η, the GLR test
compares maxηGLR(η) = GLR(η̂) with a threshold.

III-B. Detection Performance

Under H0 and H1, we have yT ∼ CN1,N (0T , σ2IN ) and
yT ∼ CN1,N (μT , σ2IN), respectively, where μT = xT

Φ̃(η).
Therefore, it can be shown that yT

Π1y
∗ follows a complex central

chi-square distribution with (N − r) and r complex degrees of
freedom under both the hypotheses, whereas yT

Π2y
∗ is distributed

as a complex central and non-central chi-square distributions with
the same degrees of freedom under H0 and H1, respectively. The
non-centrality parameter is given by μT μ∗/σ2. Furthermore, using
the orthogonal complement property of the projection matrices (i.e.,
Π1Π2 = 0) and Craig-Sakamoto theorem [14], [15], we have that
yT

Π1y
∗ and yT

Π2y
∗ are independent. Hence, underH0 the GLR

test statistic follows a complex central beta distribution with N−r
and r complex degrees of freedom, written as

1

GLR(η)
∼ CB(N − r, r), (10)
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and under H1 follows a complex non-central beta distribution with
non-centrality parameter μT μ∗/σ2, denoted as

1

GLR(η)
∼ CB(N − r, r; μT

μ
∗/σ2), (11)

where r = rank[Φ̃(η)] ≤ LP < N . Thus, when η is known, (9)
also corroborates to a constant false alarm rate (CFAR) test; refer
to [16, Ch. 4, 6] for the detailed derivations of (10), (11), and the
subsequent analytical expressions of the probabilities of false alarm
(PFA) and detection (PD).

IV. SELECTING FREQUENCY SUBSET

In this section, we develop an adaptive design technique to
select the best combination from a subset of frequencies such that
probability of detection is maximized. This could be critical in some
radar applications where saving resources is one of the primary
importance.

Suppose, the radar wants to use only L − 1 carrier frequencies
out of the L available frequencies (denoted as a set FL). However,
there are

(
L

L−1

)
= L different ways to form a subset FL−1 from

the set FL. To choose the best combination of L − 1 frequencies
we look into our discussions of the previous section. We note that
the GLR test results in a CFAR detector when η is known and the
detection performance depends on the system parameters through
the non-centrality parameter μT μ∗/σ2 = xT

Φ̃(η)Φ̃(η)Hx∗/σ2.
To compute an equivalent non-centrality parameter associated

with FL−1, we first form a reduced version of the target scattering
coefficients, xred,k, that ignores the responses corresponding to the
k-th carrier frequency, as

xred,k = x̂(η̂)	mk for k = 0, 1, . . . , L− 1, (12)

where mk =
[
1

T
P , . . . ,1T

P ,0T
P ,1T

P , . . . , 1T
P

]T
is a masking vector

that has all the entries equal to 1 except for those corresponding
to the k-th carrier frequency and 	 is the element-wise Hadamard
product. Then, we formulate the optimization procedure to choose
the best combination of L − 1 frequencies that maximizes the
corresponding non-centrality parameter, i.e.,

F
opt
L−1 =

argmax

Fk
L−1

x
T
red,kΦ̃(η̂)Φ̃(η̂)H

x
∗

red,k/σ̂2, (13)

where F
k
L−1 is a subset of FL after eliminating the k-th carrier

frequency.
Similarly, we can extend this procedure to ignore more than

one carrier frequencies and choose the optimum combinations of
frequencies, like F

opt
L−2, F

opt
L−3, etc. However, as we neglect more

frequencies the performance of the detector will deteriorate. Hence,
it calls for a compromise between the usage of lesser number of
carrier frequencies and associated detector performance.

V. NUMERICAL RESULTS

In this section, we present the results of several simulations to
illustrate our analytical results. For simplicity we consider a 2D
scenario. The velocity of the target is assumed to be v = 10̂i+10ĵ
m/s and it remains within a particular range cell throughout a given
CPI. We simulated the situation of a range cell centered at 2 km
North and 5m East with respect to the radar (positioned at the
origin). We assumed that there exist three different paths (i.e., P =
3) between that particular range cell and the radar.

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of false alarm (P
FA

)

Pr
ob

ab
ili

ty
 o

f 
de

te
ct

io
n 

(P
D

)

ST−OFDM at SNR = 0 dB
OFDM at SNR = 0 dB
ST−OFDM at SNR = −5 dB
OFDM at SNR = −5 dB

Fig. 1. Probability of detection as a function of probability of false
alarm for different SNR values.
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Fig. 2. Probability of detection as a function of probability of false
alarm for different numbers of temporal samples.

We considered a radar operating with the following specifica-
tions: carrier frequency fc = 1 GHz; available bandwidth B = 125
MHz; number of carriers L = 4; spacing between the carriers
Δf = B/(L + 1) = 25 MHz; pulse width T = 1/Δf = 40
ns; pulse repetition interval T

PRI
= 20 μs; number of coherent

pulses N = 24. We opted for an ordered sequential transmitting
pattern (i.e., P = ILP ). In this section, we refer the proposed
approach as slow-time OFDM (ST-OFDM) as we compared its
performance with that of the OFDM radar (proposed in [2]) having
the same specifications. For a fair comparison of these two systems,
we also kept fixed the transmitted energy per pulse by ensuring
al = 1/

√
L∀l for the OFDM radar.

We performed Monte Carlo simulations based on 20, 000 inde-
pendent trials to realize the following results. The entries of x were
realized from a CN (0, 1) distribution and σ2 was chosen to satisfy
the required signal-to-noise ratio (SNR), defined as

SNR = (1/N)
N∑

n=1

∣∣∣xT
φ̃(n, η

TRUE
)
∣∣∣2 /σ2. (14)

V-A. Detector Performance

Fig. 1 depicts the receiver operating characteristics (ROC),
showing the variations of probability of detection (PD) as a function
of probability of false alarm (PFA), of the ST-OFDM detector at
two different SNR values. We compared its performance with that
of the OFDM detector. It is evident that at a fixed SNR value the
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Fig. 3. Probability of detection as a function of probability of false
alarm for different numbers of temporal samples.

wideband OFDM with simultaneous usage of multiple frequencies
performs better than its narrowband sequential approach for the
same transmitted energy per pulse.

However, the performance of the ST-OFDM detector improves
when we have the possibility of obtaining more temporal samples.
Fig. 2 shows the ROCs of the ST-OFDM detector at three different
values of N , while keeping the SNR fixed at −5 dB. This shows
that the ST-OFDM detector can perform similar to, or even better
than, the OFDM detector if it can operate with a longer CPI. For
example, in this simulation the ST-OFDM detector requires 50%
more temporal samples to match the performance of the OFDM
detector.

V-B. Employing a Subset of Frequencies

To study the extent of performance degradation due to employing
a subset of available frequencies we devised the following simula-
tion. We assumed a system that employs all the L = 4 carrier
frequencies in the first N pulses. Based on the corresponding
measurements we used (13) to compute which one of the L
frequencies can be neglected with minimum performance loss, and
then transmitted the rest L− 1 carrier frequencies over the next N
pulses. We compared this system with another system that transmits
all the L carrier frequencies in the corresponding two sets of N
pulses. Fig. 3 depicts the ROCs of these systems at two different
SNR values. We observe that while operating at low SNR (e.g.,
SNR = −5 dB) the detection performance does not deteriorate
much if we ignore one of the L frequencies. However, from Fig. 3
we also notice that the detector performance drops considerably
when two of the L frequencies are neglected.

VI. CONCLUSIONS

In this paper, we addressed the problem of detecting a moving
target by exploiting multipath reflections. We first introduced a
parametric measurement model for a sequential slow-time transmis-
sion of multiple frequencies. Then, we formulated a hypothesis test
to decide about the presence of a moving target in a particular range
cell. We analytically evaluated the performance of this proposed
detector. Based on the performance analysis, we proposed a design
technique to choose the best combination from a subset of available
frequencies that maximizes the detection performance. Our numer-
ical examples show that the sequential transmission of multiple

carriers requires more coherent pulses to match the performance
of its simultaneous counterpart. In our future work, we will extend
our model to incorporate more realistic physical effects, such as
diffraction. We will integrate our detection procedure with target
tracking algorithm and validate the performance of our proposed
detector with real data.
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