A Biologically Inspired Compound-Eye Detector Array—Part I: Modeling and Fundamental Limits

Zhi Liu, Student Member, IEEE, Arye Nehorai, Fellow, IEEE, and Eytan Paldi, Member, IEEE

Abstract—This is the first part of a two-part paper. In this paper, we propose a detector array for detecting and localizing sources that emit particles including photons, neutrons, or charged particles. The array consists of multiple “eyelets.” Each eyelet has a conical module with a lens on its top and an inner subarray containing multiple particle detectors. The array configuration is inspired by and generalizes the biological compound eye: it is spherically shaped and has a larger number of detectors in each individual eyelet. Potential applications of this biomimetic array include artificial vision in medicine (e.g., artificial eyes for the blind) or robotics (e.g., for industry or space missions), astronomy and astrophysics, security (e.g., for radioactive materials), and particle communications. In this part, we assume Poisson distribution for each detector’s measurement within the observation time window. Then we construct a general parametric model for the detection rate of the Poisson-distributed measurements illustrated by a circular Gaussian lens-shaping function (LSF) approximation, which is commonly used in optical and biological disciplines. To illustrate how this “prototype” model fits practical cases, we apply it to an example of localizing a candle from 20 miles away and estimating the parameters under this circumstance. In addition, we also discuss the hardware setup and performance measure of the proposed array, as well as its fundamental constraints. Part I forms the theoretical basis for Part II, in which we analyze the performance of the array, both analytically and numerically.

Index Terms—Artificial compound eye, biologically inspired, biomimetics, eyelet, fundamental limits, lens, mean-square angular error, modeling, particle communication, particle detector array, particle source localization, weighted direction estimator.

I. INTRODUCTION

In Part I of our paper, we propose a novel detector array for detecting and localizing particle-emitting sources. The array consists of multiple “eyelets,” each having a conical module with a lens on its top and an inner subarray containing a large number of small particle detectors (for different types of particle detectors, see e.g., [1]–[4]). The eyelets can be used to detect uncharged particles such as photons and neutrons. For the case of visible-light sources, this array configuration is a generalization of the biological compound eye, being spherically shaped and having a larger number of detectors in each individual eyelet. Compared with most existing optical sensor arrays (e.g., planar CCD or CMOS sensor arrays in digital cameras), the proposed sensor array has a larger field of view (because of its spherical shape) and higher sensitivity to the source direction (because of multiple eyelets). In other words, the proposed array combines the advantages of the biological compound eye (large field of view) and of human eyes (high spatial resolution). Moreover, the size of the spherical array is compact, compared with other distributed sensor arrays (e.g., distributed antenna arrays for localizing EM sources).

This work extends our previous work on directional detector arrays, in which we introduced several detector arrays, computed their performance bounds for source localization [5], and proposed a detection algorithm to determine the presence of a far-field particle source [6]. The current extensions include the introduction of multiple eyelets, lenses, and subarrays. Compared with the arrays with projection response to the source direction in [5] and [6], the proposed array with lenses on top of subarrays possesses a sharper response function and one that is adjustable, and hence the angular resolution is increased markedly. In this two-part paper, we extend our earlier results in [7], where we briefly introduced the configuration of the proposed array, and in [8], where we analyzed the performance of the array numerically. We expand our work in [7] and [8], by generalizing the mathematical model and adding new analytical and numerical results.

A. Motivation and Applications

This work is motivated by the need for sensitive particle sensors in applications such as artificial vision, which can be important in robotics (see, e.g., [9]) or medicine (e.g., artificial eyes for the blind); security, where the detection of radioactive materials is needed (e.g., in verifying compliance with nuclear non-proliferation treaties); and astronomy assisted (e.g., estimation of orientation and angular velocity with respect to the stars for satellites and space vehicles). Potential applications also include “particle communication.” Different types of particles in potential applications are listed in Table I. Notably, an artificial compound eye that mimics a biological compound eye anatomically as well as functionally was recently built [10]. This achievement indicates that the array configuration proposed in this paper is not merely a “thought experiment” but is a potentially practical one that may have wide impact in the above areas.
TABLE I

<table>
<thead>
<tr>
<th>Particles in different applications</th>
<th>Sources of interest</th>
<th>Particles including (but not limited to)</th>
</tr>
</thead>
<tbody>
<tr>
<td>artificial vision</td>
<td>optical</td>
<td>infrared and visible photons</td>
</tr>
<tr>
<td>astronomy, astrophysics</td>
<td>cosmic</td>
<td>photons, other cosmic particles¹</td>
</tr>
<tr>
<td>security</td>
<td>optical, radioactive</td>
<td>photons, neutrons, charged particles²</td>
</tr>
<tr>
<td>particle communication</td>
<td>optical, radioactive</td>
<td>photons, other particles¹</td>
</tr>
</tbody>
</table>

¹The choice of particles and detectors depends on the specific application.
²Charged particles are subject to scattering.

Remark 1.1: Although we used visible photons in the analysis of this paper, the proposed array and the mathematical/practical model apply to all the types of particles listed in Table I.

II. BIOLOGICAL COMPOUND EYES AND THE PROPOSED ARRAY

We briefly describe the optical properties of biological compound eyes and introduce the configuration of the proposed array.

A. Biological Compound Eyes

A compound eye is a visual organ found in certain arthropods (some insects and crustaceans), as shown in Fig. 1(a). It usually contains multiple "ommatidia," each consisting of a lens and a rhabdom; see Fig. 1(b). In contrast to the single-aperture eyes of vertebrates, compound eyes have no central lens or retina. From an optical viewpoint, compound eyes can be classified into two fundamental categories [11]: apposition and superposition.

As the commonest type and possibly the ancestor of the others, an apposition eye has its rhabdoms receiving light only from their "own" corneal facets [12]. This eye consists of an array of up to 30,000 individual ommatidia, each containing a lens on the top with a cluster of (usually seven or eight) photoreceptor cells inside, which form a single photosensitive light-guiding rod, or rhabdom [13]. In other words, the ommatidia work as optically isolated units in these eyes, as shown in Fig. 1(c). In these eyes, each ommatidium collects light rays coming from a small part of the object and forms a small image of that part on its distal tip. Combination of all these small images creates a complete image of the whole object.

In contrast, superposition eyes have the characteristic that the ommatidia are not optically isolated. The term "superposition" refers to the fact that contributions from many optical elements are superimposed in the image plane [11]. In these eyes, each rhabdom senses light from a large number of corneal lenses, and each facet forms an image that extends over many rhabdoms [see Fig. 1(d)]. The superposition mechanism combines the small images of each rhabdom into a single image of the object.
Compared with single-aperture eyes, compound eyes have a much wider field-of-view (FOV), better capability to detect moving objects, and higher sensitivity to light intensity. Moreover, a compound eye may perform the function of multiple arrays simultaneously, each having different spectral responses, polarization sensitivity, integration times, or adaption organisms [12]. However, because of the tiny aperture size of each corneal lens and small number of detectors in each ommatidium, the diffraction effect of light limits the spatial resolution to about 1, yielding an image roughly 100 times coarser than that of human eyes.

B. The Proposed Array

The proposed array is spherical and contains multiple optically isolated eyelets [see Fig. 2(a)] inspired by an apposition compound eye. The reasons for choosing the apposition compound eye as the “template” include its simplicity of structure and popularity in nature. As shown in Fig. 2(b), each eyelet has a conical module with a lens on top and a subarray inside containing a large number of small particle detectors. Between the detectors and the edge of the conical module, there is a “detector-free margin” whose purpose is to make negligible the distortion of the lens-shaping function due to scattering of particles near the cone’s edge. Under the focusing effect of the lens, the incident particles form an intensity distribution on the subarray, inducing a random measurement at each detector. These measurements contain information about the source direction, which can be extracted using statistical methods.

We configure the proposed array with two major modifications on the apposition compound eye: i) providing the proposed array with a 4π rad2 FOV by a complete spherical shape (in practice the FOV may be less if mounting is considered), and ii) allowing a larger number of detectors in each subarray. Both modifications, as shown in the analysis below, remarkably improve the array performance. To further understand the similarities between the biological compound eye and the proposed array, we compare the terminology used for both structures in Table II.

III. General Mathematical Measurement Model

We consider several remote point sources whose intensities in the array vicinity are assumed to be homogeneous. The measurements of the array are particle counts of all detectors within an observation time window containing information about the source direction of interest. In order to analyze the array performance, we construct a model for these measurements.

A. Concepts, Notations, Assumptions, and Transfer Function Derivation

In Appendix D, we introduce several definitions, notations, and assumptions that are needed for the derivation of the transfer function for the general model. Based on those definitions, we derive the general model of the proposed array below.

B. Orthonormal Basis Expansion for the Array Transfer Function

Since the transfer function $H(d; E, \mathbf{u})$ for each detector d is (from a physical consideration) arbitrarily closely approximated through its truncation by a threshold energy, we may assume that it vanishes outside some finite energy band $[E_1, E_2]$. Let $\phi_k(E)$, $k \geq 1$ be any given complete system of orthonormal basis functions on $[E_1, E_2]$, the transfer function can be expanded according to this basis with corresponding coefficients $a_k(d; \mathbf{u})$ and converge in $L^2[E_1, E_2]$ to the transfer function. In this sense, the dependencies of the transfer function on E and \mathbf{u} are separated. The coefficients $a_k(d; \mathbf{u})$ play the physical role of the detector cross section for the function $\phi_k(E)$. Since this expansion holds for any given complete orthonormal system of basis functions, it is of importance to find an optimal...
orthonormal basis functions for the transfer function. We find this optimal basis functions using a (continuous) version of singular value decomposition (SVD) for integral kernels.

C. Optimization of the Orthonormal Basis Functions and LPG Functions Approximation

The optimal basis functions problem is to find an orthonormal basis function such that the truncation of the transfer function expansion after any given number of terms should give the best L^2 approximation to the transfer function over the energy-direction space (EDS). The construction of the optimal basis and its proof are very similar to the discrete kernel (i.e., matrix) case. So we give below only the construction.

Define the integral kernel

$$K(E, E') = \int_{\text{US}} H(E, u) H(E', u) \, d\mu(u)$$

where US denotes the unit sphere. It is easy to verify that the kernel K is well defined over the square $[E_1, E_2]^2$, nonnegative, symmetric and sufficiently smooth.

This kernel induces a compact integral operator from $L^2[E_1, E_2]$ to itself which is self-adjoint and has a complete orthonormal eigensystem of sufficiently smooth eigenfunctions. The corresponding eigenfunctions $\phi_k(E)$ arranged according to decreasing eigenvalues are the desired optimal basis functions. It is known from classical theory of Fredholm integral equations that each eigenvalue has a finite dimensional eigenspace (spanned by finitely many eigenfunctions) and each simple eigenvalue uniquely determine its eigenfunction (i.e., its one-dimensional eigenspace). Moreover, it follows that for the optimal basis functions, the corresponding coefficients $a_k(u)$ of the transfer function are orthogonal as well (over the US).

If the transfer function is strictly positive (in fact, if $K(E, E')$ is strictly positive), a continuous analog of the Perron–Frobenius theorem for nonnegative matrices holds for the kernel $K(E, E')$ as well—implying that the first eigenfunction (the most important one) is uniquely defined and its corresponding coefficient $a_1(u)$ is positive over the US. Since the coefficients $a_k(u)$ are orthogonal over the US, it follows that for $k \geq 2$ all the coefficients $a_k(u)$ must change signs over the US. Thus, the first coefficient $a_1(u)$ is the only one that is positive over the US! This implies the importance of this coefficient which gives the best rank-1 approximation of $H(E; u)$ by $a_1(u) \varphi_1(E)$. This rank-1 approximation may serve to define the associate direction u for each detector (independently of E). If from some physical reason, the dependence of the transfer function on E is almost uninfluenced by the direction u, then the approximation of the transfer function by a rank-1 kernel is justified.

For a rank-1 kernel approximation, it follows that the frequency dependence $\varphi_1(E)$ indicates the detector detection efficiency with respect to energy (hence imply the effective bandwidth $[E_1, E_2]$) whereas $a_1(u)$ gives the “lens shaping function” for a point source (as clearly seen by applying the transfer function to the “spherical delta function” representing the directional dependence for point-like source intensity).

Finally, as explained in Appendix E, we approximate locally each peak of $a_1(u)$ by a Gaussian function (whose associated covariance is determined by the inverse of the Hessian of $\log(a_1(u))$ and multiply it by a spherical polynomial to form a polynomial-Gaussian (PG) approximant. By taking a linear combination of such PG functions (LPG functions), we can approximate any transfer function arbitrarily closely.

Based on Remark D.8, the general modeling for L point-like particle sources and rank-r approximation for the transfer function, takes the form

$$\lambda_{i,j} = \Omega_{i,j} \left[\sum_{k=1}^{r} \sum_{l=1}^{L} \langle a_{i,j,k}(u) \mu_{k,l} \rangle + \eta_{i,j} \right]$$

where $\lambda_{i,j}$ denotes the detection rate for the i, jth detector. $\Omega_{i,j}$ is the solid angle of the cone of associated directions for the i, jth detector, $a_{i,j,k}(u)$ are the above cross section coefficients $a_k(u)$ of the transfer function with respect to the basis function ϕ_k for the i, jth detector determined for the direction u of the lth particle source, $\mu_{k,l}$ is the lth coefficient (with respect to the basis function ϕ_k) for the particle intensity $\mu_l(E, u)$ for the lth particle source, and $\eta_{i,j}$ are the resulting total noisy detection rate for the i, jth detector. Note that the coefficients $a_{i,j,k}(u)$ are approximated as LPG functions of the direction u for the lth particle source.

This general modeling has the following specifications: a) rank-r approximation of the transfer function by $\sum_k a_k(u) \phi_k(E)$; b) rank-1 approximation by $a_1(u) \varphi_1(E)$; c) LPG approximation of $a_1(u)$—especially for multifocal transfer function; d) PG approximation of $a_1(u)$; and e) circular Gaussian approximation of $a_1(u)$ and uniform approximation for $\varphi_1(E)$—this is the simplest or “prototype model” for circular Gaussian transfer function.

IV. STATISTICAL MEASUREMENT MODEL

We consider a single remote point-like source whose intensity in the array vicinity is assumed to be homogeneous and time invariant. The measurements of the array are particle counts of all detectors within the observation time window, containing information for the source direction of interest. In order to analyze the array’s performance, first we construct a model for these measurements.

Let M be the number of eyeteys in the array and N be the number of detectors in each eyeteys on the subarray’s detection surface (DS), which is defined as a smooth surface tightly enveloping the detector subarray’s physical surface. To obtain isotropic performance (i.e., the array has identical performance in localizing sources over all directions), all eyeteys (including lenses, subarrays, and detectors therein) are assumed to have identical physical and geometrical properties. In addition, the locations of the eyeteys are assumed to be approximately uniformly distributed over the spherical surface.

The time invariance of the intensity is not really needed and assumed here only for simplicity.

For simplicity, we assume the DS to be planar. Note that the analysis presented below applies also to nonplanar DS cases, for example, the roughly spherical retina in human eyes.
\(\lambda_{i,j} \) is the foremost issue in the practical modeling, since it statistically characterizes the detector’s measurement.

From a signal processing viewpoint, the detection rate \(\lambda_{i,j} \) of the \(i,j \)th detector can be naturally expressed as

\[
\lambda_{i,j} = \lambda_{i,j,s} + \lambda_{i,j,n}
\]

(2)

where \(\lambda_{i,j,s} \) and \(\lambda_{i,j,n} \) are, respectively, the expected particle counting rate of the \(i,j \)th detector coming from the source(s) and the noise. We consider two categories of noise: the count of particles coming from noise sources outside the array and the erroneous particle counts due to inner measurement (e.g., electronic or thermal) errors. From the remote and time-invariant point-source assumptions, we assume the source-particle intensity coming from different directions \(\mathbf{u} \) is homogeneous over the array’s surface and time invariant; similarly, the noise intensity is also assumed\(^5\) to be isotropic, homogenous, and time invariant throughout the array.

As a specific model based on Section III and (2), we consider the simplest rank-1 PG basis function model of \(\lambda_{i,j} \)

\[
\lambda_{i,j} = \Omega_{i,j}\alpha_i\beta_j \left[\mu \mathcal{N}(\mathbf{u}; \mathbf{u}_{i,j}, \sigma^2 I) + \eta \right]
\]

(3)

where \(\Omega_{i,j} \) is the solid angle of the cone of associated directions of the \(i,j \)th detector, \(\alpha_i\beta_j \) is the \(i,j \)th eyelet’s detection cross section area with respect to \(\mathbf{u} \), \(\mu \) is the exciting source particles intensity at the array surface \((\text{s}^{-1}\text{m}^{-2})\), ignoring the sensor’s presence, \(\eta \) is the angular density of the noise particles intensity at the array surface \((\text{s}^{-1}\text{m}^{-2}\text{rad}^{-2})\), and \(\mathcal{N}(\mathbf{u}; \mathbf{u}_{i,j}, \sigma^2 I) \) denotes the circular Gaussian LSF:

\[
\mathcal{N}(\mathbf{u}; \mathbf{u}_{i,j}, \sigma^2 I) \triangleq \frac{1}{2\pi\sigma^2} e^{-\frac{1}{2\sigma^2}(\mathbf{u}-\mathbf{u}_{i,j})^T \mathbf{u}_{i,j}}
\]

\[
\triangleq \frac{1}{2\pi\sigma^2} e^{\frac{1}{2}\mathbf{u}_{i,j}^T \mathbf{u}_{i,j} - 2\mathbf{u}_{i,j}^T \mathbf{u}} / \sigma^2. \tag{4}
\]

In (4), \(\mathbf{u}_{i,j} \) is the associated source direction of the \(i,j \)th detector and \(\sigma \) is the angular standard deviation of the Gaussian LSF (in radians), which depends on the lens surface shape and optical properties. Comparing (2) and (3), we have \(\lambda_{i,j,s} = \Omega_{i,j} \mu \alpha_i\beta_j \mathcal{N}(\mathbf{u}; \mathbf{u}_{i,j}, \sigma^2 I) \) and \(\lambda_{i,j,n} = \Omega_{i,j} \beta_j \mathcal{N}(\mathbf{u}_{i,j}, \sigma^2 I) \), indicating a good match between the mathematical and practical interpretations of \(\lambda_{i,j} \):

The vector of unknown parameters is then

\[
\theta = [\alpha_i \beta_j \mu \eta]^T.
\]

In Sections V and VI, we will discuss how to calculate the parameters and variables defined above on a practical basis, how they are associated with physical configurations of the array, and what their fundamental limitations are.

Remark 4.1: Gaussian-shaped point-spread functions (PSFs) for lens systems are widely used in the optical discipline. Examples include optical lenses [17], scanning laser ophthalmoscopes [18], stellar photometry [19], and plasma lenses [20]. Moreover, Gaussian functions are commonly used to describe the angular sensitivity function (ASF) of a retina cell in the compound-eye literature (see, e.g., [21]).

\(^5\)This assumption is made only for simplicity.

\(^6\)We assume \(\eta = \eta_{\text{out}} + \eta_{\text{in}} \), where \(\eta_{\text{out}} \) and \(\eta_{\text{in}} \) correspond to the noise coming from outside the array (e.g., noisy particle-emitting sources) and those inside the array (e.g., thermal or electronic noises), respectively.
Remark 4.2: Model (3) has the property that all its parameters can be experimentally calibrated (i.e., externally observable). Hence, we may consider it as a “minimal model.”

Remark 4.3: The \(\hat{\mu}, \hat{\eta} \)th detector’s associated source direction \(\mathbf{u}_{i,j} \) is defined as the unit vector direction of the point-like source that maximizes the detector’s particle counting rate. In other words, source particles coming from \(\mathbf{u}_{i,j} \) should focus on the detector surface of the \(\hat{\mu}, \hat{\eta} \)th detector. The method used to determine \(\mathbf{u}_{i,j} \) is given in Section V.

Remark 4.4: Note that \(\mathcal{N}(\hat{\mathbf{u}}; \mathbf{u}_{i,j}, \sigma^2 I) = \mathcal{N}(\mathbf{u}_{i,j}; \hat{\mathbf{u}}, \sigma^2 I) \).

VI. HARDWARE SETUP AND FUNDAMENTAL LIMITATIONS OF THE ARRAY

In this section, we discuss the hardware setup of the array by defining its essential configurational variables. We also consider the fundamental limitations of these variables, which will constrain the configuration of any real-world implementation of such an array.

A. Hardware Setup

In Table III, we list the configuration variables of the hardware setup of the array, which are also shown schematically in Fig. 5. In the following, we associate the directions \(\mathbf{u}_{i,j} \) in model (4), with the array’s physical variables.

We determine the associated source direction of the \(\hat{\mu}, \hat{\eta} \)th detector in the \(\hat{\eta} \)th eyelet’s reference frame \(\mathbf{I}_{\hat{\eta}} \), with all involved variables shown in Fig. 5. Define the radial direction of the \(\hat{\mu}, \hat{\eta} \)th detector as a unit vector \(\mathbf{u}_{i,j} \) along the line joining the

![Fig. 4. Candle and the detector array.](image)
spherical array center \(O \) and the center of the \(i, j \)th detector \(C_{i,j} \) and pointing outward from the spherical array; and \(\mathbf{u}_i \) as a unit vector in the (outward) direction of the symmetry axis of the \(i \)th eyelet. Let points \(C_3 \) and \(C_1 \) be the center of the subarray DS and the center of mass of the lens, respectively. Define \(\alpha_{i,j} \) as the angle between \(\mathbf{u}_{i,j} \) and \(\mathbf{u}_i \) and define \(\beta_{i,j} \) as the angle between \(\mathbf{u}_{i,j} \) and \(\mathbf{u}_j \).

Because of the focusing effect of the lens, the associated direction \(\mathbf{u}_{i,j} \) generally differs from the radial direction \(\mathbf{u}_{i,j} \) of the \(i, j \)th detector (if \(C_{i,j} \neq C_3 \)). By Snell’s law (see, e.g., [24]), we have i) \(\alpha_{i,j} < \beta_{i,j} \); ii) \(\mathbf{u}_{i,j} \) and \(\mathbf{u}_{i,j} \) lie on both side of \(\mathbf{u}_i \); and iii) \(\mathbf{u}_{i,j} \), \(\mathbf{u}_{i,j} \), and \(\mathbf{u}_j \) are on the same plane. We then define the angular expansion factor of the \(i, j \)th detector as \(k_{i,j} = \beta_{i,j} / \alpha_{i,j} \). Note that in general \(k_{i,j} \) may be different for different \(i \) and \(j \), but when the conical module of each eyelet is narrow (i.e., \(r_1 \ll R \)) we assume it to be a constant for all \(i \) and \(j \), denoted by \(k_0 \). Similar to \(\sigma \), \(k_0 \) completely depends on the lens properties: shape of inner and outer surfaces, refractive factors, etc.

By the definition of \(k_{i,j} \) and the above observations ii) and iii), we can determine \(\mathbf{u}_{i,j} \) in frame \(\mathbf{F}_i \) by

\[
\mathbf{u}_{i,j} = \frac{s}{|s|}
\]

where \(s = [r_{i,j} / \tan(k_{i,j} \tan^{-1}(r_{i,j}/l_d)); -r_{i,j} \cos \omega_{i,j} ; -r_{i,j} \sin \omega_{i,j}] \). Then \(\mathbf{u}_{i,j} = R_{i}^{-1} \mathbf{u}_{i,j,1} \).

B. Limitations of Array Variables

We discuss in Theorem 6.1 the fundamental limitations on several of the array variables as defined above.

Theorem 6.1: The following fundamental limitations with minimal particle wavelength \(\lambda_{\text{min}} \) apply to array variables \(k_0 \), \(\sigma_x \), and \(\sigma_z \):

\[
k_0 \geq \frac{2}{\sqrt{3}} \quad (M \gg 1)
\]

\[
\sigma_x \geq \sigma_x, B = \frac{\lambda_{\text{min}}}{2\sqrt{2\pi} \sqrt{1 - (l_d / \eta)^2 \ln [1 + (\eta / l_d)^2]}}
\]

This is valid since the lens refractive index is always larger than that of the array’s environment.

\[
\sigma \geq \max \left\{ \frac{k_0 \sigma_x, B}{R_d}, \frac{x_{0.1} \lambda_{\text{min}}}{2\sqrt{2\pi} \eta_1} \right\}
\]

where \(x_{0.1} \) is the first positive zero of the Bessel function \(J_0 \).

Proof: See Appendix B.

VII. Performance Measure and Its Fundamental Bounds

For analyzing the array’s performance in localizing particle sources, a natural candidate for the performance measure could be the Cramér–Rao bound (CRB) matrix of the unknown parameter vector \(\mathbf{\theta} \). However, a meaningful scalar quantity is more appropriate than a matrix measure since scalar quantities are easier to compare. In [25], we defined the mean-square angular error (MSAE) of any source direction estimator as \(\text{MSAE}_{\text{estimator}} \triangleq \mathbb{E}(\delta^2) \), where \(\delta \) is the angular error between \(\mathbf{\hat{u}} \) and its estimate \(\mathbf{\hat{u}} \). Clearly, \(\text{MSAE}_{\text{estimator}} \) depends on the array configuration, the estimation algorithm, the value of unknown parameters \(\mathbf{\theta} \), and the length of observation time window \(\tau \). Another (DOA independent) performance measure \(\text{MSAE}_{\text{avg}} \) is the (uniform) average of \(\text{MSAE}(\mathbf{\hat{u}}) \) over the US.

Moreover, we defined in [25] (see also [26]) another quantity:

\[
\text{MSAE}_{\text{CRB}} \triangleq \cos^2 \psi \cdot \text{CRB}(\phi) + \text{CRB}(\psi)
\]

where \(\text{CRB}(\phi) \) and \(\text{CRB}(\psi) \) are the (scalar) Cramér–Rao bounds for the azimuth and elevation angles, respectively. We showed that for any regular model and estimator, \(\lim_{K \to \infty} K \cdot \text{MSAE}_{\text{estimator}} \geq K \cdot \text{MSAE}_{\text{CRB}} \), where \(K \) is the number of snapshots, which is proportional to \(t \) and \(R^2 \) in this case. Thus, \(\text{MSAE}_{\text{CRB}} \) serves as an asymptotic lower bound on \(\text{MSAE}_{\text{estimator}} \).

It follows that \(\text{MSAE}_{\text{CRB}} \) is i) independent of the estimation algorithm, ii) an asymptotically tight bound attainable by some second-order efficient regular estimators (usually the maximum-likelihood estimator (MLE); see, e.g., [27]), and iii) invariant to the choice of reference coordinate frame, since the information content in the data is invariant under rotation. Considering the above desirable properties, we use \(\text{MSAE}_{\text{CRB}} \) as a performance measure showing the best asymptotic accuracy for each specific array in source-direction estimation. We will
derive the MSAE_{CRB} for the proposed array in the second part of this paper [28].

A. Universal Bound 1: MSAE_{UB}

Now that we know that MSAE_{CRB} indicates the optimal performance of a specific array configuration, we can now ask the following question: What is the “best” performance of an arbitrary array in principle? We try to answer this question by proposing a universal lower bound on MSAE, denoted by MSAE_{UB}, for an arbitrary array inside a sphere with radius \(R \), regardless of the array’s hardware or software configuration; i.e., MSAE_{UB} \leq MSAE, \forall array configurations. For this universal lower bound, we assume that neither outside noise (from noise particle sources) nor inside electronic/thermal noise is present. We need also the following (reasonable) assumption.

Assumption 7.1: “Practical” assumption: It is impossible to estimate by any combination of hardware and software the DOA of incoming particles during a certain time window better than the inherent MSAE of the (stochastic) direction of their total momentum. (Note that their total momentum is stochastic because of the quantum-mechanical uncertainty principle.)

The following theorem follows from derivations based on the uncertainty principle of quantum mechanics (see, e.g., [29] and [30]).

Theorem 7.1: Under Assumption 7.1, a universal lower bound on the MSAE (respectively, \(MSAE_{ave} \)) of any direction-of-arrival (DOA) estimator based on measurements from any sensing hardware contained inside a sphere with radius \(R \) is

\[
MSAE_{UB} = \frac{1}{ESC} \left(\frac{x_{0,1} \cdot \lambda_{\min}}{2\pi R} \right)^2
\]

whenever

\[
MSAE_{UB} \leq \frac{MSAE_0(\mathbf{u})}{2 - e^{-ESC}} \tag{8}
\]

(respectively, whenever MSAE_{UB} \leq MSAE_0/(2 - e^{-ESC})), where \(x_{0,1} \approx 2.405 \) is the first positive zero of the Bessel function of order 0, \(\lambda_{\min} \) is the minimal wavelength of the incident particles, MSAE_0(\mathbf{u}) is MSAE(\mathbf{u}) without detected source particles, and MSAE_0 = \pi^2/2 - 2 is the MSAE_{ave} without detected source particles—which is uniformly attained by the MSAE of a random estimator with uniform distribution over the US.

Proof: See Appendix C.

Remark 7.1: The derivation of MSAE_{UB} may be improved for wideband energy/wavelength particles. (The partition of the wavelength bandwidth into several narrow bands should lead to the replacement of \(\lambda_{\min} \) in (8) by the inverse of the rms value of \(1/\lambda \).)

B. Universal Bound 2: MSAE_{LCR}

Another important universal bound for any DOA estimator for the source direction \(\mathbf{u} \) can be found using an interesting method similar to the MSAE_{UB} derivation. This bound is obtained via the usual CRB expression; but instead of being dependent on the measurement model of any specific sensor, it depends on the wave function \(\psi(E, p) \) for the energy-momentum density distribution. Note that this is not the usual \(\psi(x, t) \) for space–time density distribution, which can be seen by exploiting the fact that \(\psi \) is proportional to the Fourier transform (or characteristic function) of the usual \(\psi \). Then, minimization of the CRB over possible \(\psi \) functions (i.e., possible sensors hardware) is equivalent to a maximization problem with respect to \(\psi \). This gives a truly universal lower bound for the MSAE_{CRB} of any possible hardware. This bound, which may be denoted as universal CRB or MSAE_{LCR}, is both looser and simpler than MSAE_{UB}.

The need for the UCR stems from the fact that the MSAE_{UB} is in fact a lower bound for the MSAE of the stochastic direction of the total momentum of the source particles with respect to \(\mathbf{u} \); i.e., if the direction of the total momentum may be regarded as “DOA estimator”—even though it cannot be observed directly, its MSAE with respect to \(\mathbf{u} \) can still be used as a lower bound for any estimator of it. The problem with MSAE_{UB} is that we try to find a universal lower bound not for the MSAE of estimators for the total momentum direction, but instead for MSAE of estimators of the source direction \(\mathbf{u} \). Thus, another approach for such a universal bound is needed.

Theorem 7.2: A universal lower bound on the MSAE_{CRB} for any DOA estimator based on measurements from any sensing hardware contained inside a sphere with radius \(R \) is

\[
MSAE_{LCR} \cdot (1 - e^{-ESC})^2, \quad MSAE_{LCR} = \frac{1}{ESC} \left(\frac{\lambda_{\min}}{2\pi R} \right)^2. \tag{9}
\]

Proof: See Appendix C.

Remark 7.2: Note that Remark 7.1 applies also to (9), and

\[
\sqrt{\frac{MSAE_{LCR}}{MSAE_{UB}}} \approx \frac{1}{x_{0,1}} \approx \frac{1}{2.405}.
\]

VIII. Conclusion

In this part, we proposed a novel particle-d detector array inspired by the biological compound eye and statistically modeled its behavior. This array combines the advantages of biological compound eyes (e.g., large field of view) and human eyes (e.g., high spatial resolution). It can be used to localize optical, radioactive, or cosmic sources from the far field. To analyze the array’s performance, we presented a mathematical minimal model for the array’s measurements and gave an example to illustrate how the parameters in the model can be determined in practice. We then defined the array’s physical variables and associated them with the proposed mathematical model. In addition, we discussed the performance measure of the array and derived its fundamental bounds. Part I forms the analytical basis for the second part of this paper, in which we will use the proposed measurement model to analyze the performance of the array, both analytically and numerically.

We believe that the proposed array potentially has a wide impact on optics, security, and astronomy-assisted applications. The fact that an artificial compound eye with similar structure and function to its biological counterpart was recently built makes this closer into reality.
A. Future Work

In future work, the current model can be extended by considering the correlation effects among incident particles (e.g., multipath scattering and polarization effects) by introducing a complex transfer function, time-variant particle intensity (which is essential for particle communication), particles with wide energy spectrum (to extract more source parameters, e.g., temperature), adaptive optics, multifocal lenses and polarization filters. Other extensions may include eyelet and lens-shape optimization, adaptive estimation of the directions of multiple sources, and investigation of the channel capacity for particle communication using the array.

APPENDIX A

ESTIMATION OF μ AND η_{int} IN SECTION V

A. Estimation of μ

Assume that the array detects only visible photons, i.e., the electromagnetic radiation within wavelength range $[\lambda_1, \lambda_2]$, where $\lambda_1 = 0.4 \times 10^{-6}$ m and $\lambda_2 = 0.7 \times 10^{-6}$ m. We recall Planck’s law of black-body radiation [23]:

$$P_\lambda = \frac{2\pi c^3 \lambda^3}{h^2} \left(\frac{e^{hc/\lambda kT} - 1}{e^{hc/\lambda kT}} \right),$$

where P_λ is the power of radiation per source surface area per wavelength (in J m$^{-2}$), h is Planck’s constant (6.626×10^{-34} Js), c is the speed of light in a vacuum (3×10^8 ms$^{-1}$), λ is the wavelength of a photon (in m), k is the Boltzmann constant (1.38×10^{-23} JK$^{-1}$), and T is the temperature on the source surface (in K). Also note that the energy of a single photon is $E_\lambda = hc/\lambda$; thus the number per second of photons emitted per source surface area Jm^2/λ per wavelength (m) is computed as $C_\lambda = P_\lambda/E_\lambda$. The unit of P_λ is Js$^{-1}m^{-3}$ and that of C_λ is s$^{-1}$m$^{-3}$.

For simplicity, we also assume a candle flame to be roughly spherical with radius $r_c = 1$ cm and the intensity of its radiation to be isotropic. The surface temperature of the flame is roughly 1800 K [31]. Neglecting (temporarily) the atmospheric photon absorption and assuming isotropic medium, it follows that the source photon intensity per unit wavelength at a distance r from the source, is given by

$$I(\lambda; r, T) = \left(\frac{r_c^2}{r^2} \right)^2 \left(\frac{2\pi c^3 \lambda^3}{h^2} \left(\frac{e^{hc/\lambda kT} - 1}{e^{hc/\lambda kT}} \right) \right).$$

Hence,

$$\mu = \int_{\lambda_1}^{\lambda_2} I(\lambda; r, T) \, d\lambda.$$

Using the notation $\lambda_0 = hc/kT$, the substitution $x = \lambda/\lambda_0$ gives $\mu = \int_{\lambda_1/\lambda_0}^{\lambda_2/\lambda_0} \left(\frac{r_c^2}{r^2} \right)^2 \left(\frac{2\pi c^3 x^3}{h^2} \left(\frac{e^{hc/\lambda kT} - 1}{e^{hc/\lambda kT}} \right) \right) dx = \lambda_0/\lambda_1 \lambda_2/\lambda_0 \lambda_1 \lambda_2$, and the last integral can be evaluated as $\phi(x_2) - \phi(x_1)$, where $x_1 = \lambda_0/\lambda_1$, $x_2 = \lambda_0/\lambda_2$, $\phi(x) = \int_0^x \left(\frac{2\pi c^3 x^3}{h^2} \left(\frac{e^{hc/\lambda kT} - 1}{e^{hc/\lambda kT}} \right) \right) dx$, and $\phi(x) = \ln(x) + \gamma$ for $x > 0$, where the expansion for $\phi(x)$ follows by termwise integration of the integrand expansion (into powers of x^{-1}). It can be shown that for the truncated expansion, the error term is bounded by the first neglected term times $(1 - e^{-x})^{-1}$.

Using the above values, we get $\lambda_0 = 8 \times 10^{-6}$ m, $x_1 = 20$, and $x_2 = 11.43$. The computation gives (using only the first term of the expansion) $\phi(x_2) - \phi(x_1) \approx 1.6886 \times 10^{-3}$, hence (for $r = 20$ miles)

$$\mu = 6.003 \times 10^8 \approx 6 \times 10^8 \text{s}^{-1} \text{m}^{-2}.$$

This is the unattenuated value of μ.

Remark A.1: In order to evaluate the attenuated value of μ due to atmospheric absorption, we assume the attenuation factor (due e.g., to fog condition) to be 1.1 db/mile—resulting for $(r = 20$ miles) by a total 22 db (or 12.589) for the attenuation factor, hence the attenuated (practical) value for μ is $\mu = \frac{6 \times 10^8}{12.589} \approx 4.766 \times 10^7 \text{s}^{-1} \text{m}^{-2}$.

B. Estimation of η_{int}

We can write $\eta_{\text{int}} = \eta_h + \eta_G + \eta_t$, where η_h represents the contribution from the air surrounding the sensor, η_G represents the contribution from our galaxy (milky way), and η_t represents the contribution from all the other galaxies in the universe.

Computation of η_h: In this case, denote the source (surrounding air) temperature by T_A. Then η_h is given by the photon intensity (due to surrounding air molecules) into the sensor surface divided by $2\pi r^2$, since these photons are arriving to each point on the sensor surface from only one hemisphere of directions corresponding to this point. Hence, η_h per unit wavelength is given by $\eta_h(\lambda) = \frac{(1/2)\Pi(\lambda; r, T_A)}{2\pi r^2}$, and the substitutions $x = \lambda_0/\lambda_1$, $x_1 = \lambda_0/\lambda_1$, $x_2 = \lambda_0/\lambda_2$. We get $\eta_h = c\lambda_0^3\int_0^{\lambda_0} \phi(x_2) - \phi(x_1) \approx 6.73 \times 10^{-20}$. Hence, $\eta_h \approx 1.483 \times 10^{-7} \text{s}^{-1} \text{m}^{-2} \text{rad}^{-2}$.

Computation of η_G: In this case, we have to estimate the contribution of our galaxy’s stars (except the sun!) to η_{int}. Since our solar system is located inside a spiral arm of our galaxy (milky way) whose local width in the neighborhood of our solar system is estimated by 200 pc (parsec) which is about 650 ly (light year), we approximate our galaxy contribution to η_{int} by a spherical cluster of stars with radius $R_G = 300$ ly (about half the local width of the spiral arm), centered at our solar system. In this case we can treat the stars in this cluster as stationary (hence ignoring relativistic effects due to Hubble cosmological expansion law).

The photon intensity per unit wavelength arriving to the sensor from a star at distance r with radius R_G and surface temperature T_G is given by $I(\lambda; r) = \left(R_G/r \right)^2 \left(\frac{2\pi c^3 \lambda^3}{h^2} \left(\frac{e^{hc/\lambda kT} - 1}{e^{hc/\lambda kT}} \right) \right)$, where $\lambda_0 \approx \frac{hc}{kT_G}$. Integration over λ gives the photon intensity at the sensor due to a star at distance r as $\mu(r) = \int_{\lambda_1}^{\lambda_2} I(\lambda; r) \, d\lambda$. The substitutions $x = \lambda_0/\lambda_1$, $x_1 = \lambda_0/\lambda_1$, $x_2 = \lambda_0/\lambda_2$, and $\phi(x) = \ln(x) + \gamma$, and hence $\phi(x_2) - \phi(x_1) \approx 1.6886 \times 10^{-3}$, hence (for $r = 20$ miles)

$$\mu = 6.003 \times 10^8 \approx 6 \times 10^8 \text{s}^{-1} \text{m}^{-2}.$$

This is the unattenuated value of μ.

Remark A.2: In order to evaluate the attenuated value of μ due to atmospheric absorption, we assume the attenuation factor (due e.g., to fog condition) to be 1.1 db/mile—resulting for $(r = 20$ miles) by a total 22 db (or 12.589) for the attenuation factor, hence the attenuated (practical) value for μ is $\mu = \frac{6 \times 10^8}{12.589} \approx 4.766 \times 10^7 \text{s}^{-1} \text{m}^{-2}$.
incoming photons are arriving from only one hemisphere of directions, it follows that the resulting η_K is found from μ_G by dividing it by $2\pi r_2^2$; hence $\eta_K = \mu_G/(2\pi)$. Using the above expressions for $\mu(r)$ and $N(r)$, we get $\eta_K = \pi c^4 G^2 R_0^2 / R_g^2 [\phi(x_2) - \phi(x_1)]$. To estimate ρ_G, we estimate the average number of stars per unit volume inside a sphere of radius 50 ly centered at our sun. It is known [32] that the number of such stars is about 1000; therefore, $\rho_G \approx 1000 / [(4/3) \times (50 \text{ ly})^3] \approx 2.256 \times 10^{-5} \text{ m}^{-3}$.

Since our sun can be considered as an “average star,” we estimate the star radius R_S and its surface temperature T_S by these parameters of our sun; i.e., we choose $R_S = 7 \times 10^9 \text{ m}$, $T_S = 6000 \text{ deg K}$, and get $\lambda_0 = 2.4 \times 10^{-6} \text{ m}$, $x_1 = 6$, $x_2 = 3.43$. $\phi(x_2) - \phi(x_1) \approx 0.5523$. Hence, $\eta_K \approx 1.18 \times 10^{-11} \text{ s}^{-1} \text{ m}^{-2} \text{ rad}^{-2}$.

Computation of η_U: In this case, we have to estimate the contribution of the other galaxies to η_u. As we shall see, relativistic Doppler effect (due to relativistic cosmological expansion) should be taken into account. Denote by N_U the number of stars in the other galaxies (which is almost their number in the universe!) and by R_U the universe radius. For simplicity, we use the simplest cosmological expansion model (Hubble law) according to which the average receding velocity of a star at distance r from an observer is given by $v = c(r/R_U)$. Therefore, sufficiently far galaxies should have relativistic velocities which should be taken into account. We denote by λ_S the wavelength of a photon emitted from a star in the star frame, and by λ_D the wavelength of this photon as observed in the detector frame. It follows from (relativistic) Doppler effect that $\lambda_S/\lambda_D = \sqrt{(1 - v/c)}/(1 + v/c)$. Hence, by Hubble law $\lambda_S/\lambda_D = \sqrt{(1 - r/R_U)/(1 + r/R_U)}$. Let $T_S = \lambda_S/c$ be the photon time period in the star frame, and $T_D = \lambda_D/c$ denote the photon time period in the detector frame. Standard (even nonrelativistic) physical consideration shows that the number of incoming photons with bandwidth $d\lambda_S$ to the detector during period $T_D(1 - v/c)$ in the star frame is identical to the corresponding number of incoming photons with bandwidth $d\lambda_D$ to the detector during period T_D in the detector frame. This equality can be written as $I_D(\lambda_D, r) d\lambda_D dT_D = I_S(\lambda_S, r) d\lambda_S T_S(1 - v/c)$, where $I_S(\lambda_S, r)$ is the photon intensity per wavelength λ_S at distance r in the star frame, while $I_D(\lambda_D, r)$ is the corresponding photon intensity as observed in the detector frame. Therefore, $I_D(\lambda_D, r) = I_S(\lambda_S, r) (d\lambda_S/d\lambda_D) T_S/T_D (1 - v/c)$. Since $T_S/T_D = \lambda_S/\lambda_D = d\lambda_S/d\lambda_D = \sqrt{(1 - v/c)/(1 + v/c)}$, we get $I_D(\lambda_D, r) = I_S(\lambda_S, r) (1 + v/c)^2/(1 + v/c) = I_S(\lambda_S, r) (1 - r/R_U)^2/(1 + r/R_U)$. In the star system $I_S(\lambda_S, r) = (R_S/r)^2 2\pi c^4 [e^{\lambda_S/\lambda_0} - 1]$, where $\lambda_0 = hc/(k T_S)$. Since $\lambda_0/\lambda_S = \sqrt{(1 + r/R_U)/(1 - r/R_U)}$, we have $I_S(\lambda_S, r) = (R_S/r)^2 2\pi c^4 [e^{\lambda_S/\lambda_0} - 1].$ Hence, $I_D(\lambda_D, r) = I_S(\lambda_S, r)(1 - r/R_U)^2/(1 + r/R_U) = (R_S/r)^2 2\pi c^4 [e^{\lambda_S/\lambda_0} - 1].$ This is the desired relativistic intensity expression in the detector frame.

Denote by ρ_U the average number of stars per unit volume in the universe. Clearly, $\rho_U = N_U / (4\pi R_U^3)$. Hence $\eta_U \approx 1.9 \times 10^{10} \text{ s}^{-1} \text{ m}^{-2} \text{ rad}^{-2}$. (A.2)
Appendix B

Proof of Theorem 6.1

(a) The lower bound on k_{α}: We derive the lower limit of the angular expansion factor k_{α}, assuming the number of eyelets M is sufficiently large (such that each eyelet’s associated cone of source directions is narrow). The lens center points on the surface of the spherical array are determined by the tables in [33].

We consider the associated direction cones of three contiguous identical lenses, namely, the ith, $(i+1)$th, and $(i+2)$th. Fig. 6(a) shows the top view of these cones on the array surface. Under the large M assumption, the edge of the cones (which is a section of the spherical surface) can be approximated by planar circles, as shown in Fig. 6(b), on which each point corresponds to a source direction. Each solid circle represents the radial cone (of source direction) of the corresponding eyelet; the source can be seen from this eyelet without the lens if the direction lies in this cone. Each dashed circle represents the associated cone (of source direction) of the eyelet; the source can be detected by this eyelet with the presence of the lens if the direction lies in this cone. The centers of the circles are labeled as O_i, O_{i+1}, and O_{i+2}, respectively. The shaded area represents the source direction set which is invisible to the lens.

Obviously, to remove the “blind region” (shaded area), the center of the region (labeled by O') should be enclosed by at least one associated cone under the lens effect. In other words, the “minimal” associated cone should be the dashed circles in Fig. 6(b), which intersect at O'. Clearly, $r_i' = r_i / \sqrt{3}/2\gamma_i$ under the large M assumption (i.e., $\alpha \to 0$), or $\lim_{\alpha \to 0} (r_i' / \gamma_i) = 2/\sqrt{3}$. On the other hand, as shown in Fig. 6(c), generally (i.e., without the large M assumption) $r_i' = R \sin \beta = R \sin (k_{\alpha} \alpha)$ and $\gamma_i = R \sin \alpha$, where α and β are defined in the figure; i.e., $r_i' / \gamma_i = \sin (k_{\alpha} \alpha) / \sin \alpha$. It then follows that

$$\frac{2}{\sqrt{3}} = \lim_{\alpha \to 0} \frac{\sin (k_{\alpha} \alpha)}{\sin \alpha} = k_{\alpha}. \quad (B.1)$$

Note that the value of k_{α} in (B.1) is the minimal one that is necessary to remove all the nonvisibles regions on the unit sphere surface. Hence, under the large M assumption, $k_{\alpha} \geq (2/\sqrt{3})$, which gives the bound in (6a).

(b) The lower bound on σ_x: Let (x, y) be the position of a detected particle on a subarray DS, and $p = [p_x, p_y, p_z]^T$ be the momentum vector of that particle. From the uncertainty principle in quantum mechanics (see, e.g., [29] and [30]), we have

$$\sigma_x \sigma_{p_x} \geq \frac{\hbar}{2} \quad (B.2)$$

where σ_x is the standard deviation of the x component distribution of the detected particles positions on the subarray DS, and σ_{p_x} is the standard deviation of the statistical distribution of the x component of their momenta p_x. Under the azimuthal symmetry assumption, the distributions of positions (x, y) and momenta (p_x, p_y) are azimuth invariant; i.e., $\sigma_x = \sigma_y$ and, similarly, $\sigma_{p_x} = \sigma_{p_y}$. We further assume that σ_x is approximately constant over the DS (this is especially true for a “narrow” eyelet cone of associated directions); thus, the lower bound on σ_x should be achieved at the center of the DS.8

It follows from (B.2) that $\sigma_x \geq \frac{\hbar}{2\sigma_{p_x}}$, where equality is attained (from the derivation of the uncertainty principle using the Cauchy–Schwarz inequality) if and only if the wave function is Gaussian (i.e., x is Gaussian distributed), which indicates that the above lower bound on σ_x may be tight.

Now the problem becomes one of finding an upper bound on σ_{p_x}. Let $P = \sqrt{p_x^2 + p_y^2 + p_z^2}$ denote the norm of the momentum and by P_{max} its maximal value. We assume that the particle intensity is uniformly distributed over the inner lens surface, so that we may exactly compute the expectation $E[p_{x}^2 + p_y^2]$ under this assumption as follows. Let the particle (marginal) probability density at the lens inner surface, on a circle with radius r around the lens symmetry axis be $2\pi r/\pi r_0^2 = 2r/r_0^2$, where the random variable r takes value in the interval $[0, r_0]$. Note that $\int_0^{r_0} (2r/r_0^2) dr = 1$, which validates the probability density distribution defined above. Hence, $E[p_{x}^2 + p_y^2] = \frac{\hbar^2}{2\sigma_{p_x}^2}$.

8Even if σ_x fails to be approximately constant over the DS, we still can try to find a lower bound for it in the center of the DS. Then under the assumption that the lens is designed such that σ_x is the smallest at the DS center, this lower bound for σ_x at the DS center still applies to any other point on the DS.
$$E[P_{\text{f},x}^2/(r^2 + h_1^2)] \leq P_{\text{f}}^2 \int_{x=0}^{\infty} \frac{1}{x + h_1^2/r_1^2} dx.$$ By changing the integration variable to $x = r^2/r_1$, we get

$$E[P_{\text{f},x}^2 + P_{\text{f},y}^2] \leq P_{\text{f}}^2 \int_{0}^{1} \frac{x}{x + h_1^2/r_1^2} dx = P_{\text{f}}^2 \left[1 - \left(\frac{h_1}{r_1} \right)^2 \ln \left(1 + \left(\frac{h_1}{r_1} \right)^2 \right) \right].$$

Since $E[P_{\text{f},x}^2 + P_{\text{f},y}^2] = 2\sigma_{\text{f}}^2$ by azimuthal symmetry, we see that the lower bound on σ_x is given by

$$\sigma_x \geq \frac{\hbar}{2\sigma_{\text{f}}} = \frac{\hbar}{\sqrt{2E[P_{\text{f}}^2]}} \geq \frac{\lambda_{\text{min}}}{2\sqrt{2\pi} / (r_1^2)} = \sigma_{x,B} \quad (B.3)$$

using the relationship $2\hbar \tau_f / \lambda_{\text{min}}$. Note that when $r_1 \ll h_1$, $\sigma_{x,B}$ is asymptotically equal to $\lambda_{\text{min}}/(2\pi r_1^2)$.

c) The lower bound on σ: According to the relationship $\sigma \simeq k_0 \sigma_{x,R} / R_1$, when σ is sufficiently small, we have the first lower bound on σ:

$$\sigma \geq \frac{k_0 \sigma_{x,R} / R_1}{2\sigma_{x,R}} \quad (B.4)$$

where $\sigma_{x,R}$ is given in (B.3). In the following we derive the second lower bound on σ corresponding to MSAE_{MIN}.

We assume the particles are arriving independently at the array according to a common LSF, which is responsible for their common angular distribution, assumed to be invariant with respect to the azimuth. Thus, from each detected particle (whose detection may be considered as a single experiment), one may infer the estimated angular distribution of the source direction (i.e., the probability distribution of the possible associated directions that lead to the detection at a specific point) using the LSF. However, from the definition of the LSF, this angular distribution estimate of the source direction (estimated by the lens-shaping function knowledge) should have the same angular distribution as the LSF itself! It follows that the MSAE for the direction of the total momentum of the detected particles is asymptotic to $2\sigma^2/\text{ESC}$ as ESC tends to ∞.

On the other hand, this MSAE has a universal bound where the lens is serving as a “particle sensor” whose cross section has radius r_1 instead of R_1. Hence, according to (8), $2\sigma^2 = \lim_{\text{ESC} \to \infty} [\text{ESC-MSAE}] \geq \lim_{\text{ESC} \to \infty} [\text{ESC-MSAE}_{\text{MIN}}(R = r_1)] = (x_{0,1,1} \lambda_{\text{min}} / 2\pi r_1)^2$.

Then it follows from the above discussion that

$$\sigma \geq \frac{x_{0,1,1} \lambda_{\text{min}}}{2\sqrt{2\pi} r_1}. \quad (B.5)$$

Combining (B.4) and (B.5), we obtain the theoretical lower bound on σ as follows:

$$\sigma \geq \sigma_{\text{B}} = \max \left\{ \frac{k_0 \sigma_{x,R}}{R_1}, \frac{x_{0,1,1} \lambda_{\text{min}}}{2\sqrt{2\pi} r_1} \right\}. \quad (B.6)$$

This completes the proof.

APPENDIX C

PROOFS OF THEOREMS 7.1 AND 7.2

A. Proof of Theorem 7.1

Proof: In order to prove the theorem, we introduce a definition of a particle detection event as follows.

Definition C.1: A particle is said to be detected inside the sensor detection domain (which is a certain space–time domain), if the presence of a particle inside this domain is observed (i.e., determined) and recorded by the hardware and software of the sensor system.

Definition C.2: A particle-detection event is defined as the first point (x,y,z,t) in space–time where a detected particle started (for the first time) its interaction with the sensor hardware (which leads eventually to its detection).

Note that prior to its detection, a detected particle behaves as a “free particle” described by a quantum-mechanical wave function, which is a plane wave $\psi(x,y,z,t)$ with expected free particle momentum $E[p] = E[\{p_x,p_y,p_z\}] = -i\hbar(\nabla \psi, \psi)$, where $\nabla = (\partial/\partial x, \partial/\partial y, \partial/\partial z)$ is the gradient operator. Similarly, the free particle has an expected energy: $E[E] = \hbar(q(\partial \psi/\partial t, \psi))$.

To ensure that the sensor software is able to estimate the source direction, $E[p]$ of the above “free particles” (i.e., prior to their detection event) must be estimated, since $E[p] = \{P_x, P_y, P_z\}$ is proportional to u (the source direction) as they carry the same source direction information. Here, we denote

$$E[p_x] = P_x, E[p_y] = P_y, E[p_z] = P_z. \quad (C.1)$$

Assume that in addition to detecting particles, the sensor is equipped with some software to estimate the momentum p of the particle exactly at its detection event, which leads to a “partial collapse” of the wave function because of the observation act. This is a well known “observation principle” in quantum mechanics in which the modified wave function may be regarded as a result of the former ψ conditioned with respect to the detection and momentum observation.

Note that $E[p] = \{P_x, P_y, P_z\}$ for the modified ψ is the same as that of a free particle (since the detection event is just prior to the interaction of the detected particle with the sensor hardware). Hence, due to the conservation of the momentum and energy at the detection event (just before the sensor hardware begins) with respect to that of the free particles, we claim that $E[p]$ based on the modified ψ (i.e., the wave function describing the particle at the random detection event conditioned on its observation inside the sensor detection domain) is the same as $E[p]$ for the former ψ. Thus, for the modified ψ, we have the following three constraints $E[p] = \{P_x, P_y, P_z\}$, where the right-hand-side (RHS) is the same as defined in (C.1) using the former ψ.

Without loss of generality, we may redefine (by rotation) the sensor coordinate frame so that the source direction coincides with the z direction, and we get for the modified ψ: $P_x = P_y = 0$. Also, according to our assumptions, the particle detection event occurs only inside a sensor domain D during a detection time interval $[0,T]$. We denote by D_{ST} the corresponding “detection space-time domain,” and denote the quantum wave function of the detected particles inside D_{ST} by $\psi(x,y,z,t)$, which
is a (complex-valued) function in $L^2(\mathbb{R}^4)$ with unit norm; i.e.,
$$\langle \psi, \psi \rangle = 1.$$

From a physical viewpoint, ψ is continuous over \mathbb{R}^4 and vanishes outside D_{ST} (particularly $\psi = 0$ on D_{ST} boundary). Moreover, ψ is in $C^2(D_{ST})$ with its derivatives with respect to x, y, z, t in $L^2(\mathbb{R}^4)$ (such that the covariance matrix of its moment may be defined).

The momentum components p_x, p_y, p_z of each detected particle are associated (as observables) with the following Hermitian operators on $L^2(\mathbb{R}^4)$: p_x is associated with the operator $-i\partial/\partial x$, and similarly for p_y and p_z with respect to y and z, respectively. Thus, the expectations of p_x^2 and p_y^2 are given by $E[p_x^2] = -\hbar^2(\langle \partial^2/\partial x^2 \rangle, \psi \rangle, \psi \rangle, E[p_y^2] = -\hbar^2(\langle \partial^2/\partial y^2 \rangle, \psi \rangle, \psi \rangle$, and its variance is $\text{var}(p_x) = E[p_x^2] - E[p_x]^2$, which follows from the constraint $p_x = 0$. Similar expressions apply for the p_y, p_z components.

For $n \geq 1$, denote by $\text{MSAE}_p(n)$ the MSAE for the direction of the total momentum of detected source particles if exactly n particles detected within the time window. Clearly $\text{MSAE}_p(n)$ is undefined for $n = 0$. For a particle with wavelength λ, the corresponding momentum is $p = \hbar/\lambda$, thus if λ_{\min} is the minimal wavelength, then the total momentum of n particles is upper bounded by $n\hbar/\lambda_{\min}$. Therefore

$$\text{MSAE}_p(n) \geq n\hbar^2/\lambda_{\min}^2, n \geq 1,$$

(C.2)

which follows again from the constraints $p_x = p_y = 0$. Note that D_{ST} indicates the direction of source particles before entering the sensor domain D (i.e., the expectation of their momentum component along the direction from the source to the sensor), and ESC is the expected number of source particles entering the sensor domain D during the detection time interval $[0, T]$ (i.e., entering the “detection space-time domain” D_{ST}), as defined previously. Clearly $\text{ESC} = \mu_{\text{esc}} T$, where μ is the source particle intensity around the sensor domain D (it is assumed to be uniform there), and esc is the sensor cross section with respect to the source direction.

Remark C.1: If we denote by D_P the projection of the three-dimensional domain D on the x, y plane, then D_P is a planar domain whose area is area_{esc}.

Since both the sensor hardware and the detection wave function ψ (especially inside D_{ST}) are unknown in practice, we have to find the minimum for the MSAE_p in (C.2), which depends (for given P and ESC) only on the wave function ψ, with respect to ψ (subject to the restrictions on ψ).

Thus, we have the constraints $p_x = p_y = 0$, and

$$E[p_x^2 + p_y^2] = -\hbar^2 \left\langle \left(\frac{\partial}{\partial x} \right)^2 + \left(\frac{\partial}{\partial y} \right)^2 \right\rangle \psi, \psi \rangle \quad = \hbar^2 \left\langle \frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2} \right\rangle + \left\langle \frac{\partial^2}{\partial y^2} \frac{\partial^2}{\partial y^2} \right\rangle \psi, \psi \rangle,$$

where the last equality follows from integration by parts. Hence, $\text{MSAE}_p(n) \geq \lambda_{\min}^2/(2\pi)^2 \text{CUB} T \text{ESC} n^{-1}$, where

$$\text{CUB} = \text{CUB}(D_{ST}) = \inf_f \left[\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2 \right] \quad = \inf_f \left[\left(\frac{\partial^2 f}{\partial x^2} + \left(\frac{\partial^2 f}{\partial y^2} \right) \right) \frac{\partial f}{\partial y} \right]$$

in which the infimum is taken over all possible wave functions f in $L^2(\mathbb{R}^4)$ that satisfy the following restrictions: a) $(f, f) = 1$; b) f is continuous over \mathbb{R}^4 and vanishes outside D_{ST}; c) f has first-order derivatives almost everywhere in D_{ST}; d) the first-order derivatives of f are in $L^2(\mathbb{R}^4)$; and e) $\langle \partial f/\partial x, f \rangle = \langle \partial f/\partial y, f \rangle = 0$, which corresponds to $P_x = P_y = 0$.

Denote by MSAE_p, the MSAE of the direction of the total momentum of the detected source particles during the time window provided that at least one particle is detected (i.e., $n \geq 1$). Thus MSAE_p is the expectation of $\text{MSAE}_p(n)$ over all positive n values. From the above we get

$$\text{MSAE}_p \geq \lambda_{\min}^2/(2\pi)^2 \text{CUB} T \text{ESC} n^{-1} \geq 1.$$

The last condition expectation of n^{-1} over the positive values of n can be estimated from below (after normalization of the Poisson distribution for only positive values of n) with the result $E[n^{-1}] \geq 1 - e^{-\text{ESC}/\text{ESC}}$. In addition, it is easy to show that MSAE_p as defined in Theorem 7.1 is uniformly attained by the MSAE of a random DOA estimator uniformly distributed over the unit sphere, which gives

$$\text{MSAE}_p = \lambda_{\min}^2/(2\pi)^2 \text{CUB} T \text{ESC}$$

for any estimator whenever $\text{ESC} = 0$. Thus, by Assumption 7.1 and the above discussion we have for any DOA estimator

$$\text{MSAE}(\text{u}) \geq \lambda_{\min}^2 \text{CUB}(1 - e^{-\text{ESC}}) \frac{2}{(2\pi)^2 \text{ESC}} + e^{-\text{ESC}} \text{MSAE}_p(\text{u}).$$

To solve the infimum problem for $\text{CUB}(D_{ST})$, let D_{ST} be a space-time domain larger than D_{ST} (i.e., containing D_{ST}). Clearly, any f satisfying the above restrictions a)–e) in D_{ST} should also satisfy those in D_{ST}. Thus, the above infimum monotonically decreases with increasing D_{ST}, i.e., $\text{CUB}(D_{ST}) \leq \text{CUB}(D_{ST})$, which gives a lower bound for $\text{CUB}(D_{ST})$.

Then we choose D_{ST} as the cylindrical domain $D_P \times \mathbb{R}^2$, where (x, y) are restricted to the planar domain D_P and (z, t) are unrestricted. In order to compute $\text{CUB}(D_{ST})$, we use a classical expansion of any function $u(x, y)$ in $L^2(D_P)$ into a Fourier–Bessel orthogonal expansion (see, e.g., [34, Sec. 3.7]) as

$$u(x, y) = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} c_{mn} u_{mn}(x, y),$$

where c_{mn} is the nth positive zero of $J_m(x)$. Note that the selection of c_{mn} ensures that $u_{mn}(x, y) = 0$ whenever $\rho = R$; i.e., $x^2 + y^2 = R^2$.

It follows that u_{mn} are orthogonal in $L^2(D_P)$ and vanish on its boundary. Another well known fact is that the orthogonal sequence u_{mn} in $L^2(D_P)$ is complete, which justifies the observation that the above expansion of any function $u(x, y)$ in $L^2(D_P)$ should converge in L^2 to $u(x, y)$ itself. More important, functions u_{mn} result from the separation of variables method for the 3-D Laplace equation in cylindrical coordinates, which is needed for the following derivation.

It can be easily seen (from, e.g., [34]) that after the z coordinate is separated out, the remaining x, y dependence satisfies

9Using Jensen’s inequality $E[n^{-1}] [n \geq 1] \geq (E[n] [n \geq 1])^{-1}$.

10Using the invariance of MSAE_p under rotations, and Fubini’s Theorem.

11E.g., from the orthogonality relations (3.95) in [34].

12E.g., w from the theory of Bessel functions.
the following \((\partial^2/\partial x^2 + (\partial/\partial y)^2 + k^2)u(x,y) = 0\), whose solutions are \(J_m(k \rho)e^{im\phi}\). Therefore, considering the above restriction (b) that the solutions should vanish on the boundary \(\rho = R\), we have \(J_m(k \rho) = 0\), which leads to the quantization condition \(k = k_{m,n} = x_{m,n}/R\). Thus, for \(k = k_{m,n}\) we have

\[
\left(\frac{\partial}{\partial x} \right)^2 + \left(\frac{\partial}{\partial y} \right)^2 + k_{m,n}^2 \right) u_{m,n}(x,y) = 0. \quad (C.3)
\]

Now, letting \(f(x,y,z,t)\) be any continuous function in \(L^2(\mathbb{R}^2)\) which vanishes whenever \(x^2 + y^2 \geq R^2\), then for any fixed \(z, t\) in \(\mathbb{R}^2\), we may consider \(f(x,y,z,t)\) as an \(L^2\) continuous function of \(x, y\) in the disk \(x^2 + y^2 < R^2\) that vanishes outside this disk. Thus, we have by the Fourier–Bessel expansion

\[
f(x,y,z,t) = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} c_{m,n}(z,t)u_{m,n}(x,y) \quad (C.4)
\]

where \(c_{m,n}(z,t)\) is the appropriate coefficient for this expansion.

Therefore, if \(f\) is constrained to have unit norm in \(L^2(\mathbb{R}^2)\), i.e., \(\langle f, f \rangle = 1\), we get

\[
\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \langle c_{m,n}, c_{m,n}\rangle \langle u_{m,n}, u_{m,n}\rangle = 1. \quad (C.5)
\]

For “sufficiently regular” \(f\), applying the operator \((\partial^2/\partial x^2 + (\partial/\partial y)^2)\) to the expansion (C.4), we obtain from (C.3)

\[
\left[\left(\frac{\partial}{\partial x} \right)^2 + \left(\frac{\partial}{\partial y} \right)^2 \right] f(x,y,z,t)
\]

\[= \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} -k_{m,n}^2 c_{m,n}(z,t)u_{m,n}(x,y).
\]

It then follows from integration by parts that

\[
\langle \partial f/\partial x, \partial f/\partial x \rangle + \langle \partial f/\partial y, \partial f/\partial y \rangle = -\left(\left(\frac{\partial}{\partial x} \right)^2 + \left(\frac{\partial}{\partial y} \right)^2 \right) f, f \rangle
\]

\[= \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} k_{m,n}^2 c_{m,n}(z,t) \langle u_{m,n}, u_{m,n}\rangle.
\]

Now, since \(k_{m,n} = x_{m,n}/R\) and \(x_{m,n} \geq x_{0,1}\) (see e.g., (9.5.2) in [35] for interlacing properties of the zeros of Bessel functions \(J_n(x)\)), using (C.5) we get the following:

\[
\langle \partial f/\partial x, \partial f/\partial x \rangle + \langle \partial f/\partial y, \partial f/\partial y \rangle \geq \left(\frac{2\pi}{\pi} \right)^2 (x_{0,1})^2 \quad (C.6)
\]

where \(x_{0,1}\) is the first positive zero of \(J_0(x)\), and its numerical value is approximately 2.40482. The inequality (C.6) is true for sufficiently smooth \(f\) and for any \(f\) that satisfies the above five constraints a)–e), with the equality attained if and only if the \(x, y\) dependence of \(f\) is proportional to \(u_{0,1}(x,y)\).

Thus, we conclude\(^\dagger\) that \(C_{\text{UB}} = (x_{0,1}/R)^2\). Since \(C_{\text{UB}} \geq C'_{\text{UB}}\), we have

\[
\text{MSAE}(\mathbf{u}) \geq \text{MSAE}_{\text{UB}}(1 - e^{-\text{ESC}})^2 + e^{-\text{ESC}}\text{MSAE}_0(\mathbf{u}), \quad (C.7)
\]

which implies the result. (The corresponding result for \(\text{MSAE}_0(\mathbf{u})\) is similarly proved.) \(\Box\)

B. Proof of Theorem 7.2

Proof: The idea of \(\text{MSAE}_{\text{UB}}\) is to find the wave function \(\psi(p,E)\) describing the momentum-energy probability density of a source particle (instead of the traditional wave function \(\psi(x,t)\) describing the space-time probability density); and then to express the resulting CRB and \(\text{MSAE}_{\text{CRB}}\) as a function of \(\psi\), which depends only on the hardware. Therefore, we just need to minimize \(\text{MSAE}_{\text{CRB}}(\psi)\) with respect to any possible \(\psi\). Furthermore, since the function \(\psi\) depends very simply on the usual \(\psi\), we need only to minimize \(\text{MSAE}_{\text{CRB}}\) with respect to \(\psi\), which will be seen to be trivial.

The connection between \(\psi(x,t)\) and \(\hat{\psi}(p,E)\) can be described as the following. First, note that the space-time \((x,t)\) and the momentum-energy \((p,E)\) are dual spaces in the sense that scaling down the space variables \(x\) leads to (via the uncertainty principle) scaling up the momentum variables \(p\) and vice versa. In other words, the vectors \(x\) and \(p\) are dual to each other. Similarly, \(t\) and \(E\) are also dual. A simple guess is that the wave function \(\hat{\psi}(p,E)\) is proportional to the Fourier transform of \(\psi(x,t)\), where the proportionality constant is determined so that the normalization constraint \(\langle \psi, \psi \rangle = 1\) is satisfied; i.e., the probability to find the momentum and energy \(p, E\) of the particle somewhere in the momentum-energy space is 1.

Simple evaluation of the normalization constant shows that the suggested expression for \(\hat{\psi}(p,E)\) is given by

\[
\hat{\psi}(p,E) = h^{-2} \int_{\text{ST}} \psi(x,t)e^{-i(xp-\phi E)t/\hbar} \text{d}m(x,t) \quad (C.8)
\]

where \(h\) is Planck’s constant, \(\text{ST}\) denotes the space-time domain, \(\hbar\) denotes \(h/(2\pi)\) and \(\text{d}m(x,t)\) is the standard measure over \(\text{ST}\) (i.e., over \(R^4\)).

Note that i) \(\hat{\psi}(p,E)\) is proportional to (and may be regarded as) the Fourier transform of \(\psi(x,t)\); and ii) since \(\psi(x,t)^2\) represents the space-time pdf of a particle, it is integrable over \(\text{ST}\) (i.e., \(|\psi|^2\) is in \(L^1(R^4)\), or \(\psi(x,t)\) is in \(L^2(R^4)\)).

Since \(\hat{\psi}(p,E)\) is the Fourier transform of \(\psi(x,t)\), it follows (by Plancherel’s theorem) that \(\hat{\psi}(p,E)\) is in \(L^2(R^4)\) and by the inversion formula

\[
\psi(x,t) = h^{-2} \int_{\text{MES}} \hat{\psi}(p,E)e^{i(xp-\phi E)t/\hbar} \text{d}m(p,E) \quad (C.9)
\]

where \(\text{MES}\) denotes the momentum-energy space, and \(\text{d}m(p,E)\) is the standard measure over \(\text{MES}\) (i.e., over \(R^4\)).

\(^{13}\)This result is a special case of the classical “Poincaré inequality.”
Thus, \(\psi(x, t) \) and \(\tilde{\psi}(p, E) \) are in 1 to 1 correspondence, which is in fact an isometry of \(I^2(R^4) \) onto itself—preserving its inner product and norm as an Hilbert space. In particular
\[
\langle \psi, \psi \rangle = 1 \quad \text{if and only if} \quad \langle \tilde{\psi}, \tilde{\psi} \rangle = 1 \quad (C.10)
\]
i.e., the normalization is preserved as desired.

Now, in order to justify our previous “guess” that the above representation of \(\tilde{\psi}(p, E) \) is the correct one, we observe that by applying the operator \(\nabla \) to \(\psi(x, t) \) (represented by (C.9)) we can get that the operator \(\nabla \) in space-time has its dual presentation in momentum-energy as \(\hat{\nabla} \), or

the operator \(p \) in MES is represented by \(-i\hbar \nabla \) in ST, \((C.11) \)

Similarly, by applying the time derivative \(\partial / \partial t \) operator to \(\psi(x, t) \) as represented by (C.9), we get its representation as \(-iE/\hbar \) in MES, or

the operator \(E \) in MES is represented by \(i\hbar(\partial / \partial t) \) in ST, \((C.12) \)

Repeating applications of these operators, we get that the above representations hold also for all their moments, which is in agreement with the basic quantum-mechanical principles. Since any PDF is uniquely determined by its moments, it follows that the momentum-energy PDF \(\left| \tilde{\psi}(p, E) \right|^2 \) is uniquely determined by the above guess of \(\tilde{\psi}(p, E) \) given by (C.8). This justifies our guess for the PDF of the momentum-energy over MES, and is all we need to derive the corresponding CRB—the phase of \(\psi \) is not needed.

Choosing the \(z \) direction of the reference frame to be in the source direction \(u \), we evaluate the “partial FIM” corresponding to \(p_x \) and \(p_y \) components of any particle momentum as what follows. Its components are (using the PDF \(f \) \(\tilde{\psi}(p, E) \left| \tilde{\psi}(p, E) \right|^2 \) FIM\(p_x, p_y \) = \int_{\text{MES}} \left(\partial f / \partial p_x \right)^2 / f \) \(\chi_{\text{mes}}(p, E) \leq \left(\partial / \partial p_x \right) \tilde{\psi}, \left(\partial / \partial p_y \right) \tilde{\psi} \), which can be derived by using the expression for \(f \). Similar expression holds for FIM\((p_y, p_y) \), hence
\[
\text{FIM}(p_x, p_y) \leq 4 \left(\left(\partial / \partial p_x \right) \tilde{\psi}, \left(\partial / \partial p_x \right) \tilde{\psi} \right), \quad (C.13)
\]
\[
\text{FIM}(p_y, p_y) \leq 4 \left(\left(\partial / \partial p_y \right) \tilde{\psi}, \left(\partial / \partial p_y \right) \tilde{\psi} \right). \quad (C.14)
\]

Seeing that the corresponding CRB matrix can be found by inverting the FIM, we obtain a lower bound for the MSAE\(\text{CRB} \) by using MSAE\(\text{CRB} \geq \left[\text{CRB}(p_x, p_y) + \text{CRB}(p_y, p_y) \right] / T^2_{\text{max}} \). Thus, MSAE\(\text{CRB} \) lower bound is given in terms of \(\psi \) (which depends of course on the specific hardware used), it is simpler to minimize the MSAE\(\text{CRB} \) with respect to the usual \(\psi \) instead of the dual \(\tilde{\psi} \) by observing that
the operator \(\left(\partial / \partial p_x \right) \) in MES
represented by \(i\hbar / \hbar \) in ST, \((C.15) \)
the operator \(\left(\partial / \partial p_y \right) \) in MES
represented by \(i\hbar / \hbar \) in ST, \((C.16) \).

Remark C.2: (C.15) and (C.16) can be proved similar to the proofs of (C.11) and (C.12).

We get from (C.13)–(C.16) [using the normalization (C.10)]
\[
\text{FIM}(p_x, p_x) \leq 4x^2 / h^2, \quad \text{FIM}(p_y, p_y) \leq 4y^2 / h^2.
\]
Thus, from the MSAE\(\text{CRB} \) lower bound expression
\[
\text{MSAE}_{\text{CRB}} \geq h^2 (x^2 + y^2) / 4T^2_{\text{max}} \quad (C.17)
\]
and \(h / T_{\text{max}} = \lambda_{\text{min}} / (2\pi) \), we are led to the minimization problem \(\min_{x, y} x^2 + y^2 \), such that \(x^2 + y^2 = R^2 \) because the detection event is inside a sphere of radius \(R \).

It is easy to verify that the minimizer satisfies \(x^2 = y^2 = R^2 / 2 \). Inserting this into (C.17), we get MSAE\(\text{CRB} \geq \lambda_{\text{min}}^2 / (2\pi R^2) \). Since this is true for each particle, and since the particles are independent, we finally get (using the expectation of \(n^{-1} \) as in the proof of Theorem 7.1)
\[
\text{MSAE}_{\text{CRB}} (\text{FIM}) \geq \text{MSAE}_{\text{ERC}} [1 - e^{-\text{ESC}C}] \quad (C.18)
\]
which is the result.

APPENDIX D

CONCEPTS, NOTATIONS, ASSUMPTIONS, AND TRANSFER FUNCTION EXISTENCE FOR THE GENERAL MODEL

We assume that the polarization state of the particles is known (e.g., circular polarization of incoming electromagnetic radiation) in order to simplify the modeling; otherwise, the modeling should be generalized in terms of complex combinations of quantum wave functions corresponding to independent polarization states.

Definition D.1:

a) US—denotes the two-dimensional unit sphere \(S^2 \) on which each point \(u \) may be regarded as a unit vector representing a direction, and is equipped with its standard (area) measure denoted as \(m(u) \).

b) EDS—denotes the energy-direction space defined as the (Cartesian) product of \(R_+ = (0, \infty) \) (representing particles energies) with US (representing particles directions). The EDS is equipped with the product measure of the standard measures for \(R_+ \) and US, denoted as \(m(E, u) \). Note that the EDS can also be identified with \(R^3 \) without its origin.

d) \(n(S; p, r; [t_0, t]) \) is defined as the expected number of (virtual) particles, having their energies and directions in a measurable subset \(S \) of the EDS and crossing (both inward and outward) the sphere with center \(p \) and radius \(r \) during the time window \([t_0, t] \).

e) \(I(S; p; [t_0, t]) \) is defined as the following limit
\[
l_{\text{lim}}(S; p; [t_0, t]) = \frac{n(S; p; [t_0, t])}{\pi r^2}
\]
whenever it exists.

c) \(I(S; p; t) \) is defined as the particle intensity for a set of energies and directions \(S \subset \text{EDS} \) at spatial point \(p \) and time \(t \), and is defined as the rate with respect to \(t \) (whenever it exists) of \(I(S; p; [t_0, t]) \).

Remark D.1: \(I(S; p; t) \) exists for every measurable \(S \) contained in EDS and every space-time event \([p, t] \). Hence,
\(I(S; p, t) \) can be regarded as a distribution (i.e., a positive measure) over the EDS for each given space-time event \((p, t)\).

Note that \(I(S; p, t) \) is influenced by the sensor. In order to avoid that effect we introduce the concept of exciting intensity by:

Definition D.3: \(\mathcal{E}(S; p, t) \)—is called the exciting intensity and defined as the intensity \(I(S; p, t) \) without the presence of the sensor.

Note that \(\mathcal{E}(S; p, t) \) is independent of the sensor presence and not influenced (as \(I(S; p, t) \)) by its scattering effects.

For simplicity, we assume that the exciting intensity is i) time-invariant so that \(t \) in the EI notation can be ignored,\(^{14}\) and ii) is uniform in the vicinity of the array due to the far-field source assumption. Accordingly, we denote the time-invariant and uniform EI around the array as \(\mathcal{E}(S) \). Here, we assume that iii) \(\mathcal{E}(S) \), interpreted as an exciting intensity distribution over the EDS, is absolutely continuous with respect to the standard (product) measure over the EDS. Note that the assumption iii) is physically reasonable since by quantum mechanical principles, the energies and moments of the particles have some joint probability distribution whose density is determined by some wave function.

Definition D.4: \(\mu(E, \mathbf{u}) \)—denotes the EI density with respect to the standard measure over the EDS, and is defined as the exciting particle intensity density at energy \(E \) and direction \(\mathbf{u} \) over the EDS. In practice, we model the contribution of each point-like source to \(\mu(E, \mathbf{u}) \) by a “spherical \(\delta \) function.”

Definition D.5: DS—denotes the detection surface, which is defined as any smooth surface tightly enveloping the detectors physical surfaces endowed with its standard area measure.

Let \(n(D; S; \mathcal{E}; [t_0, t]) \) denote (for any given subset \(D \) of DS, subset \(S \) of EDS, and \(\mathcal{E} \)) the expected particle counts within time window \([t_0, t]\) due to particles hitting \(D \) and resulting from the given EI distribution with energies and directions confined to \(S \). Accordingly:

Definition D.6: \(\text{DR}(D; S; \mathcal{E}; t) \)—denotes the (time-variant) detection rate for given subset \(D \) of DS, subset \(S \) of EDS, and \(\mathcal{E} \), and is defined as the rate with respect to \(t \) whenever it exists of \(n(D; S; \mathcal{E}; [t_0, t]) \) at time \(t \).\(^{15}\) In what follows we assume it to be time-invariant, and denote this detection rate by \(\text{DR}(D; S; \mathcal{E}) \).

We then make the following assumptions that are needed for the model derivation.

Assumption D.3: (Additivity Assumption of EI and DR With Respect to the EDS): We assume that if \(S_1 \) and \(S_2 \) are disjoint measurable sets in the EDS with \(S_1 \cup S_2 \) being their union, then we have \(\mathcal{E}(S_1) + \mathcal{E}(S_2) = \mathcal{E}(S_1 \cup S_2) \); and for any measurable subset \(D \) on the detection surface, \(\text{DR}(D; S_1) + \text{DR}(D; S_2) = \text{DR}(D; S_1 \cup S_2) \).

Note that this assumption is reasonable for deterministic exciting particles, but for virtual particles this is not true in general (due to interference effects.) Therefore, we need the following assumption which is a sufficient condition for Assumption D.3.

Assumption D.4: Interference effects among exciting particles are negligible.

Remark D.1: As examples for Assumption D.4 we may consider a) the no scatterers case: in this case the exciting particles are emitted independently of each other; and b) negligible correlations among sources and scatterers: in this case (appearing e.g., in applications with DOA including multipath effects) the correlations among the sources and scatterers (e.g., for EM waves are described by constant phase differences among the vector phasors describing the EM waves from distinct sources and scatterers) are negligible.

Assumption D.5: For any fixed EI and measurable subset \(D \) of the DS, the detection rate \(\text{DR}(D; S; \mathcal{E}) \)—regarded as a positive measure over measurable subsets \(S \) of the EDS—is absolutely continuous with respect to the positive measure \(\mathcal{E}(S) \) over the EDS. Note that this assumption is physically reasonable (since it means that if \(\mathcal{E}(S) = 0 \) then \(\text{DR}(D; S; \mathcal{E}) = 0 \) as well).

We further define the following.

Definition D.7: \(H(D; E, \mathbf{u}; \mathcal{E}) \)—denotes the detection transfer function for EI and any given measurable subset \(D \) of the DS at point \((E, \mathbf{u})\) on the EDS, which is defined as the density of the measure \(\text{DR}(D; S; \mathcal{E}) \) with respect to \(\mathcal{E}(S) \). Considering the EI distribution as the sensor “input” and the detection rate distribution as its “output,” we can see that \(H(D; E, \mathbf{u}; \mathcal{E}) \) describes the sensor operation by giving its input–output relationship. Note that the existence of the density \(H(D; E, \mathbf{u}; \mathcal{E}) \) is equivalent to assumption D.5.

Now we make more reasonable assumptions (with justifications) in order to simplify the modeling and present parametric structure suitable for analysis. The first step is to make \(H(D; E, \mathbf{u}; \mathcal{E}) \) dependent only on the density (assuming its existence) \(\mu(E, \mathbf{u}) \), with value only at \((E, \mathbf{u})\) and not the entire distribution \(\mathcal{E} \) over the EDS.

Assumption D.6: (Continuity Assumption of \(H(D; E, \mathbf{u}; \mathcal{E}) \) With Respect to \(E, \mathbf{u} \)): We assume that for any given distribution EI and measurable subset \(D \) of the DS, the function \(H(D; E, \mathbf{u}; \mathcal{E}) \) as a function of \(E, \mathbf{u} \) is continuous over the EDS.

Remark D.2: Assumption D.6 is physically reasonable since \(H(D; E, \mathbf{u}; \mathcal{E}) \), as a function of \(E, \mathbf{u} \), is a result of physical processes described by certain partial differential equations, and as such should be even smooth (and not merely continuous).

Assumption D.7: (Existence and Continuity Assumption of \(\mu(E, \mathbf{u}) \)): We assume that each EI distribution over the EDS has a continuous density \(\mu(E, \mathbf{u}) \) with respect to the EDS standard measure.

Remark D.3: The physical validity of Assumption D.7 lies in the fact that since (by the uncertainty principle) the momentum of each particle is distributed, as a result both its energy and direction are distributed as well. Note also that even in classical physics, particle sources are distributed in space (with the only “singular” object—a “black hole”—that cannot emit particles, according to classical physics) and are not truly point-like. However, in this paper we may still use spherical \(\delta \) distribution for point-like particle sources, but it is only a mathematical idealization of a truly distributed source. The continuity of \(\mu \) may be physically justified according to Remark D.2. There

\(^{14}\)Time-variant exciting intensities are useful in the modeling of particle communications.

\(^{15}\)This definition of the detection rate is independent of \(t_0 \).
is also a mathematical justification to Assumption D.7 in the sense that each EI distribution (as a positive absolutely continuous Borel measure over EDS) can be approximated arbitrarily closely by another distribution with a continuous density $\mu(E, u)$. (Moreover, even by infinitely differentiable $\mu(E, u)$ with compact support in the EDS—i.e., with finite energy bandwidth—which follows from a well known approximation property of infinitely differentiable functions with compact support in \mathbb{R}^n.)

Thus, under Assumptions D.6 and D.7 we have that (for given D and EI the detection rate $DR(D; S; EI)$ (as a distribution over the EDS) has a density given by $\lambda(D; E, u; EI) = H(D; E, u; EI) \cdot \mu(E, u)$. Moreover, by Assumption D.6 and D.7 this density should be continuous with respect to E and u. Since $\lambda(D; E, u; EI)$ depends (by its definition) only on the local properties of the EI around the point (E, u), it may depend on EI only through $\mu(E, u)$ (its value at the specific point (E, u) in the EDS). Hence, we may write it as $\lambda(D; E, u; u; \mu(E, u))$ to emphasize this dependence on $\mu(E, u)$ (which might be nonlinear in general).

Assumption D.8: We assume that for any fixed D, E, and u, the density $\lambda(D; E, u; u; \mu(E, u))$ is a continuous functional of $\mu(E, u)$ over $L^1(EDS)$. The last step to achieve a “truly transfer function” $H(D; E, u)$ is to remove the above dependency by assuming:

Assumption D.9: (Weak Intensity Assumption): We assume that the total exciting intensity (TEI) is sufficiently small, such that (according to Assumption D.8) we may put $\mu(E, u) = 0$ in $H(D; E, u; u; \mu(E, u))$—making H independent of $\mu(E, u)$. Thus, we may write H as $H(D; E, u)$—a truly transfer function.

Remark D.4: This assumption merely states that the sensor is working in its “linear zone.” For visible light, it is determined mostly by the detectors, instead of the lens and possible optical filters whose operation is approximately linear for higher TEI. More precisely, $H(D; E, u; EI) = H(D; E, u) + o(TEI)$. Note that the above approximation holds (independently of the EI distribution) whenever the total intensity $TEI = EI(EDS)$ is sufficiently small.

In the following we assume that Assumptions D.3 to D.9 hold so that the transfer function $H(D; E, u)$ is well defined. Moreover, we assume that $H(D; E, u)$ is sufficiently smooth (e.g., infinitely differentiable)—which is reasonable according to the remark to Assumption D.7.

Definition D.8: (E_D, u_D)—denotes the associated energies and directions for each set D (of positive area) on the detection surface, which is defined as the pair (E, u) that maximizes $H(D; E, u)$, assuming existence and uniqueness of the global maximizer. Note that the existence follows from the continuity of H and the reasonable assumption that the transfer function decays to zero as the energy tends to infinity, while the uniqueness is a standard assumption.

Remark D.5: As stated above, the pair (E_D, u_D) may be calibrated (at least in principle) only in the case where D is a union of detectors.

Remark D.6: The transfer function $H(D; E, u)$ is of fundamental importance for the sensor modeling since it contains all the information needed to describe and model the sensor operation. The sensor may be described as an input–output system, whose input is the EI distribution and output is the detection rate $DR(D)$ distribution over measurable subsets D of the detection surface. Note that the only subsets D for which $DR(D)$ can be really observed are these which are union of some whole surface of detectors—however, we still have a definition for Borel measurable subsets D.

In order to see that the transfer function H describes completely the behavior of the sensor as an input–output system, we show in the following how to use it to model the sensor operation: let S be any measurable subset of the EDS, we have $DR(D; S; EI) = \int_S H(D; E, u)\mu(E, u)$, where $d\mu(E, u)$ is an element of the exciting particle intensity distribution over the EDS with respect to the (E, u) coordinates. Clearly $\mu(E, u)$ is the element of the usual measure over the EDS.

Remark D.7: If d is a detector with E_d and u_d as its associated energy and associated direction, then E_d and u_d are observable and as a result can be calibrated. In conclusion, the associated energy and associated direction are defined for any measurable D on the detection surface with positive area; while for sets D with zero area, (E_D, u_D) is defined only when D is a single point (it is not defined e.g., for a one dimensional set like a curve).

Let DS_i denotes the detection surface for the ith eyelet; and assume that to each point p on DS_i there is a corresponding direction $\gamma_i = \phi(p)$, where ϕ is a C^2-diffeomorphism from DS_i into US, such that the center of mass (with respect to the standard DS_i measure) for each detector d on DS_i is mapped by ϕ to the associated direction γ_i of d. This assumption (about the existence of such ϕ) is reasonable since ϕ, in addition to being smooth, is required to satisfy only a finite set of interpolation restrictions. Such ϕ will be called an interpolating diffeomorphism. The image $\Omega_1 = \phi(d)$ is called “the cone of associated directions for the detector d,” and $\Omega_2 = \phi(DS_i)$ is called “the cone of associated directions for the ith eyelet” with its interpola-

Remark D.8: For each given pair (E, u) of the EDS, the transfer function $H(D; E, u)$ is a positive measure over the Borel measurable subsets D of the DS, which is absolutely continuous with respect to the solid angle measure of the image $\phi(D)$ of D under the interpolating diffeomorphism ϕ (as described by remark D.7). Therefore, under the assumption that the density of $H(D; E, u)$ (as a measure over subsets D) with respect to the solid angle measure of $\phi(D)$ is continuous over D, we get that $H(d; E, u)/\Omega_1$ is slowly varying over neighboring detectors. Thus, the transfer function $H(d; E, u)$ for each detector d in an eyelet is nearly proportional to the detector’s solid angle Ω_1. And by redefining the “detector specific transfer function” to be the ratio $H(d; E, u)/\Omega_1$ and denoting it again by $H(d; E, u)$, we get that $H(d; E, u)$ is almost independent of the detector d (irrespective of its solid angle Ω_1); then from remark D.6, we have

$$DR(d; ED) = \Omega_1 \int_{EDS} H(d; E, u)\mu(E, u)\mu(E, u)$$

For the detection rate for each detector d due to the density $\mu(E, u)$ of the exciting particle intensity distribution EI over the
EDS. Similar assumption exists for the noisy count rate for each detector, which should be nearly proportional to the detector’s solid angle Ω_d of its cone of associated directions.

Definition D.9: To each point p on the DS, there correspond its “radial direction” \mathbf{v}_p defined as the unit vector in the direction of the radius vector from the spherical array center to p. For each measurable subset D of the DS, denote by \mathbf{v}_D its “cone of radial directions” which consists the radial directions \mathbf{v}_p for all points p in D. Clearly, this induces a “radial diffeomorphism” ϕ_D from DS into US by $\phi_D(p) = \mathbf{v}_p$ for each point p on the DS, whose restriction to D is a diffeomorphism from D onto $\phi_D(D) = \mathbf{v}_D$. By Remark D.7, there is another diffeomorphism ϕ from the DS into the US sending each point p on the DS to its associate direction \mathbf{u}_p. The Jacobian of the transformation from the radial directions $\phi_D(p) = \mathbf{v}_p$ to the associated directions $\phi(p) = \mathbf{u}_p$ (for any point p on the DS) is called “solid angle expansion factor” with its square root called “angular expansion factor” and denoted by k_D. Note that though k_D is defined locally and may vary over the DS, for eyelets with sufficiently small angular aperture, we may assume k_D to be (nearly) constant over the eyelet’s associated cone of directions. The physical explanation for the angular expansion factor is mainly due to the lens focusing effect.

APPENDIX E

SPHERICAL GAUSSIAN FUNCTIONS, PG FUNCTIONS, AND LPG FUNCTIONS

A spherical Gaussian function (of a unit vector \mathbf{u}) over the US is defined to be proportional to $e^{-Q(\mathbf{u}-\mathbf{u}_0)}$ where \mathbf{u}_0 is a fixed unit vector, and $Q(\mathbf{u}-\mathbf{u}_0)$ is positive-semi-definite (PSD) quadratic form in the components of $\mathbf{u}-\mathbf{u}_0$. More specifically, we denote (up to a normalization factor) by $N(\mathbf{u}; \mathbf{u}_0, P)$ the function $e^{-(1/2)(\mathbf{u}-\mathbf{u}_0)^T P^{-1} (\mathbf{u}-\mathbf{u}_0)}$, where \mathbf{u}_0 is a unit vector (the mean) and P is a positive definite 3×3 matrix (the covariance). Given any 2-dimensional local parametrization of \mathbf{u} in a neighborhood of \mathbf{u}_0 (i.e., parametrization of the 2-dimensional component of \mathbf{u} that is orthogonal to \mathbf{u}_0), $N(\mathbf{u}; \mathbf{u}_0, P)$ has a local 2×2 covariance matrix at \mathbf{u}_0 with respect to any given such parametrization, defined as the inverse of the Hessian at \mathbf{u}_0 (with respect to the given local parametrization) of $-\log N(\mathbf{u}; \mathbf{u}_0, P)$. Note that any sufficiently smooth function $f(\mathbf{u})$ over the US with a local maximum at \mathbf{u}_0, can be approximated locally near \mathbf{u}_0 (up to second order Taylor expansion terms) by a suitable spherical Gaussian function whose 2×2 local covariance at \mathbf{u}_0 agrees with the local covariance of $f(\mathbf{u})$ at \mathbf{u}_0 (i.e., the inverse of the Hessian at \mathbf{u}_0 of $-\log f(\mathbf{u})$).

Note that for $P = \sigma^2 I_3$ we get a circular Gaussian function on the US, which is invariant with respect to the choice of reference frame. The normalization constant in this case is $(1/2\pi\sigma^2)[1 - e^{-2/\sigma^2}]^{-1}$. However, it is customary to define it as $1/(2\pi\sigma^2)$ because its relative error is negligible for practical values of σ.

A spherical polynomial $p(\mathbf{u})$ over the US is a polynomial in the components of the unit vector \mathbf{u}. It is well known (e.g., from the properties of the spherical harmonics) that each continuous function on the US is uniformly approximable arbitrarily closely by spherical polynomials.

A PG function over the US is defined as a spherical polynomial multiplied by a spherical Gaussian function. Obviously, any continuous function on the US is uniformly approximable arbitrarily closely by PG functions.

LPF functions are linear combinations of PG functions and are very suitable for approximating sufficiently smooth functions with several maxima over the US. The method is to select certain “important” peaks of the given function and to approximate it in a neighborhood of the peak by a Gaussian function whose mean and local covariance at the peak is adapted to that of the given function, then the approximating LPF function is found as a linear combination of each Gaussian function multiplied by a suitable spherical polynomial of bounded order so as to minimize this approximating error in L^2(US) sense. This gives a standard LS optimization for the LPF function coefficients.

REFERENCES
Dr. Liu has been a member of the Phi Kappa Phi honor society by election by 2004. He received the Siemens Prize for outstanding graduate study in

Zhi Liu (S’04) received the Ph.D. degree in electrical and system engineering from Washington University in St. Louie in 2007, the M.Sc. degree in information and control engineering from Tongji University, China, in 2001, and the B.Sc. degree in electrical engineering from the North China University of Technology (NCUT), Beijing, China, in 1996. Since 2007, he has been a Software Developer with OSISoft Inc., San Leandro, CA. His current work includes implementing sensor processing techniques in the development of data acquiring and processing software. His research interests focus on statistical signal processing and its biologically inspired application to sensor-array processing. He is also interested in image processing, medical imaging (e.g., PET and SPECT), and biological vision.

Dr. Liu has been a member of the Phi Kappa Phi honor society by election since April 2004. He received the Siemens Prize for outstanding graduate study in 2000.

Aryeh Nehorai (S’80–M’83–SM’90–F’94) received the B.Sc. and M.Sc. degrees in electrical engineering from the Technion—Israel Institute of Technology, Haifa, Israel, and the Ph.D. degree in electrical engineering from Stanford University, Stanford, CA.

From 1985 to 1995, he was a Faculty Member with the Department of Electrical Engineering at Yale University. In 1995, he became a Full Professor with the Department of Electrical Engineering and Computer Science at The University of Illinois at Chicago (UIC). From 2000 to 2001, he was Chair of the department’s Electrical and Computer Engineering (ECE) Division, which then became a new department. In 2001, he was named University Scholar of the University of Illinois. In 2006, he became Chairman of the Department of Electrical and Systems Engineering at Washington University in St. Louis. He is the inaugural holder of the Eugene and Martha Lohan Professorship and the Director of the Center for Sensor Signal and Information Processing (CSSIP) at WUSTL since 2006.

Dr. Nehorai was Editor-in-Chief of the IEEE TRANSACTIONS ON SIGNAL PROCESSING from 2000 to 2002. From 2003 to 2005, he was Vice President (Publications) of the IEEE Signal Processing Society (SPS), Chair of the Publications Board, member of the Board of Governors, and member of the Executive Committee of this Society. From 2003 to 2006, he was the founding editor of the special columns on Leadership Reflections in the IEEE SIGNAL PROCESSING MAGAZINE. He was co-recipient of the IEEE SPS 1989 Senior Award for Best Paper with P. Stoica, coauthor of the 2003 Young Author Best Paper Award and co-recipient of the 2004 Magazine Paper Award with A. Dogandzic. He was elected Distinguished Lecturer of the IEEE SPS for the term 2004 to 2005 and received the 2006 IEEE SPS Technical Achievement Award. He is the Principal Investigator of the new multidisciplinary university research initiative (MURI) project entitled Adaptive Waveform Diversity for Full Spectral Dominance. He has been a Fellow of the Royal Statistical Society since 1996.

Eytan Paldi (S’87–M’94) received the B.Sc. and M.Sc. degrees in mathematics and the B.Sc. and D.Sc. degrees in electrical engineering from the Technion—Israel Institute of Technology, Haifa, in 1977, 1984, 1978, and 1990, respectively. He is currently working towards the Ph.D. degree in mathematics at the Technion.

From 1979 to 1986, he was a Mathematician and Software Engineer with Elbit Computers, Inc., working on R&D projects in avionics. From 1986 to 1990, he was a Teaching Assistant at the Technion. From 1990 to 1991, he was an HTI postdoctoral Fellow, and from 1991 to 1993 he was a Postdoctoral Associate with the Department of Electrical Engineering at Yale University, New Haven, CT. In 1994, he worked on a mathematical research and development project at IBM, Haifa, Israel. Since 1995, he is an independent scientific consultant for industrial research and development projects. His current research interests are in stochastic modeling, estimation, optimization, polynomial root clustering, rational non-negative definite kernels, and conformal surgery methods in complex analysis.

Dr. Paldi was awarded, during his studies, several Gutwirth Fellowships, the Jury Prize, and the Kennedy-Leigh Prize.