VI. CONCLUSION

In this correspondence, we have presented a new method to estimate the parameters of bilinear systems. Considering the structure of the data matrix of the bilinear system equations, we extended the GTLS problem and defined the e-GTLS problem. We proposed the solving method of the e-GTLS problem using the Newton–Raphson method. Through computer simulations, we showed that the e-GTLS method is an unbiased estimator of the bilinear system parameters and that the performances of the e-GTLS method are better than those of the GTLS method.

REFERENCES

Localizing Vapor-Emitting Sources by Moving Sensors
Boaz Porat and Aryeh Nehorai

Abstract—The authors have recently explored the use of novel concentration sensors for detecting and localizing vapor-emitting sources. In the present correspondence we propose to replace stationary sensors by moving sensors, thus gaining the following two advantages. 1) A single moving sensor can accomplish the task of an array of stationary sensors by exploiting spatial and temporal diversity. 2) The sensor motion can be planned in real time to optimize localization performance.

I. INTRODUCTION

Recently, there has been considerable progress in the development of sensors for low concentration vapors. Sensors of this kind are potentially useful in applications such as explosive detection, drug detection, sensing leakage of hazardous chemicals, pollution sensing, and environmental studies.

In a previous paper we have examined the problem of detecting and localizing vapor-emitting sources by stationary sensor arrays.

Manuscript received May 15, 1995; revised August 29, 1995. This work was supported by the Air Force Office of Scientific Research under Grant no. F49620-93-1-0096, the National Science Foundation under Grant no. MIP-9122753 and the Office of Naval Research under Grant no. N00014-91-J-1296. The associate editor coordinating the review of this manuscript and approving it for publication was Prof. Michael D. Zolotov.

B. Porat is with the Department of Electrical Engineering, Technion—Israel Institute of Technology, Haifa, Israel (e-mail: boaz@ee.technion.ac.il).

A. Nehorai was with the Department of Electrical Engineering, Yale University, New Haven, CT, USA; he is now with the Department of Electrical Engineering and Computer Science, University of Illinois, Chicago, IL, USA.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 44, NO. 4, APRIL 1996

[1] Based on the diffusion equation, we developed models for spatial distributions of vapors in various environments, and used them to develop measurement models. We then derived detection and estimation algorithms, analyzed their performance, and conducted some simulation studies.

This correspondence looks at the problem of vapor source localization when the sensors are permitted to move. Such a sensor can achieve spatial diversity by taking measurements at different locations at different times. In principle, a single sensor can thus perform tasks that would need an array of stationary sensors (for example, a minimum of five stationary sensors was shown in [1] to be necessary for localization in three dimensions). As a possible scenario, consider a vehicle, equipped with vapor sensors, moving in an open area where hazardous materials may be present, and whose task is to detect and localize such materials. The vehicle may be driven by a protected person or be remote controlled. Assume that the vehicle’s path can be selected in real time subject to speed and maneuvering limitations and possible geometric constraints (e.g., obstacles). The goal is to use the freedom in the vehicle’s path to optimize localization under a properly defined criterion. In a more general setting, we can consider several vehicles performing a coordinated search. One can liken this scenario to a search by trained dogs, since dogs use their sensing ability and freedom of motion in a similar manner. The great difference is, of course, that dogs function individually and do not share their respective information, while an automated system of the type we propose optimizes performance based on all available information.

The optimality criterion used in this correspondence for planning the sensors’ motion is to reduce as much as possible the expected location estimation error after the next measurement is taken. This is accomplished by computing the gradients of the Crum–Rao bound (CRB) on the location error with respect to the sensors’ coordinates, and moving the sensors opposite to the corresponding gradient directions. Since location estimation is performed using maximum likelihood, the actual accuracy is expected to be close to the CRB, so by minimizing the CRB we can hope to minimize the actual estimation error.

Passive localization through spatial and temporal diversity has been treated by many authors in various contexts. Worthwhile noting are the fundamental works of Moura [2]–[4]; relevant to the present work are [5] and [6], which deal with trajectory optimization based on the Fisher information and the CRB, respectively.

This correspondence describes the mathematical details of the proposed localization method and illustrates it by an example.

II. MATHEMATICAL MODELING

In this section we describe the physical and measurement models. Here we consider only the simplest case—that of a point source in an infinite volume, emitting vapors at a constant rate. More general models are developed in [1].

Let \(c(x, t) \) be the diffusing substance concentration at a point \(x \) and time \(t \), in Kg/m^3. The classical diffusion equation for a source-free volume and constant diffusivity is

\[
\frac{\partial c}{\partial t} = \kappa \nabla^2 c \tag{1}
\]

where \(\kappa \) is the diffusivity, in units of m^2/s.

Consider a point source at \(\vec{r} \) in an infinite medium, releasing a diffusing substance at a constant rate of \(\mu \) Kg/s, starting
at time \(t_0 \). The solution to (1) is then given by

\[
c(r, t) = \frac{\mu}{4\pi \kappa} \cdot \text{erfc} \left(\frac{|r - \bar{r}|}{2\sqrt{\kappa(t - t_0)}} \right)
\]

(2)

where \(\text{erfc}(x) = (2/\sqrt{\pi}) \int_x^{\infty} e^{-y^2} dy \) is the complementary error function.

We now discuss the measurement model. Chemical sensors are designed to be as selective as possible, that is, their sensitivity to the substance of interest should be as high as possible, while their sensitivity to foreign (undesired) substances should be as low as possible. Nonetheless, no sensor can be completely insensitive to foreign materials. Therefore, it is reasonable to model the response of a sensor located at point \(r \) by

\[
y(r, t) = c(r, t) + b(r, t) + \epsilon(r, t)
\]

(3)

where

- \(c(r, t) \) is the concentration of the substance of interest, as given by (2).
- \(b(r, t) \) is a bias (or "clutter") term, representing the sensor’s response to foreign substances that may be present.
- \(\epsilon(r, t) \) is the sensor’s noise.

The source location \(\bar{r} \), its intensity \(\mu \), the diffusivity \(\kappa \), and the initial time \(t_0 \) are assumed unknown.

There are assumed to be \(m \) sensors, which are allowed to be in motion. Their locations \(\{r_i(t), 1 \leq i \leq m \} \) are assumed to be known at all times. The bias term is assumed to be time invariant and uniformly distributed in space. In other words, we are assuming that substances interfering with the desired measurement are in a steady state and are the result of many sources, so they have reached both temporal and spatial equilibrium. The corresponding bias intensity \(b \) is assumed to be unknown. Finally, the noise is assumed to be independent from sensor to sensor, uncorrelated in time, and Gaussian distributed with zero-mean and unknown variance \(\sigma^2 \). We remark that the Gaussian assumption is not quite physical, since in practice \(y(r, t) \) must be a nonnegative quantity. However, for relatively small \(\sigma \) (that is, much smaller than \(c(r, t) + b(r, t) \)), the Gaussian model is a reasonable approximation. In summary, our measurement model for the \(i \)th sensor is

\[
y(r_i, t) = \frac{\mu}{4\pi \kappa} \cdot \text{erfc} \left(\frac{|r_i - \bar{r}|}{2\sqrt{\kappa(t - t_0)}} \right)
\]

\[
+ b(r_i, t) + \epsilon(r_i, t) \sim \mathcal{N}(0, \sigma^2).
\]

(4)

III. Parameter Estimation and the CRB

Before we describe the moving-sensor algorithm, we recall the maximum likelihood estimation approach and the Cramér–Rao lower bound presented in detail in [1]. We assume that the available measurements are \(\{y(r_i(t_k), t_k), 1 \leq i \leq m, 1 \leq k \leq p \} \), where \(p \geq 2 \).

Partition the parameter vector as \([\theta^T, \mu^T, \sigma^2]^T \) where \(\theta = [x, \mu, \kappa, t_0]^T \) and \(x = [\mu, b]^T \). With this notation we can lump the measurements in the vector form

\[
y = A(\theta)x + \epsilon
\]

(5)

where \(y \) is an \((mp) \)-dimensional vector whose \((m(k - 1) + i)\)th component is \(y(r_i(t_k), t_k) \) and similarly for \(\epsilon \), while \(A(\theta) \) is a \(mp \times 2 \) matrix whose \((m(k - 1) + i)\)th row is given by

\[
[(1/4\pi \kappa)|r_i(t_k) - \bar{r}|^2/2\sqrt{\kappa(t_k - t_0)}, 1).
\]

(6)

The maximum likelihood estimates are

\[
\hat{\theta} = \arg \max_{\theta} \{y^T P_A(\theta) y \}
\]

(7)

\[
\hat{x} = [A^T(\hat{\theta})A(\hat{\theta})]^{-1} A^T(\hat{\theta})y
\]

(8)

\[
\hat{\sigma}^2 = (mp)^{-1}y^T P_A(\hat{\theta}) y
\]

(9)

where \(P_A(\theta) \) is the projection matrix on the column space of \(A(\theta) \), and \(P_A^T(\theta) \) is the complementary projection matrix, that is

\[
P_A(\theta) = A(\theta)[A^T(\theta)A(\theta)]^{-1} A^T(\theta),
\]

(10)

\[
P_A^T(\theta) = I - P_A(\theta).
\]

Writing \(A(\theta) \) in terms of its two columns, say \([a(\theta), u]\) (where \(u \) is a vector of 1’s), we can express (7) (omitting the dependence on \(\theta \) for convenience) as follows:

\[
\hat{\theta} = \arg \max_{\theta} \left\{ \frac{[(y^T a) - (mp)^{-1}(u^T y)(u^T a)]^2}{(a^T a) - (mp)^{-1}(u^T a)^2} \right\}.
\]

(11)

The Cramér–Rao bound (CRB) for unbiased estimates of the parameters is given by [7] as follows:

\[
\text{CRB}(\theta) = \frac{\sigma^2}{\mu^2} \{D^T(\theta) P_A^T(\theta) D(\theta)\}^{-1}
\]

(12)

\[
\text{CRB}(x) = \sigma^2 \{A^T(\theta)[I - \mu^2 P_D(\theta)] A(\theta)\}^{-1}
\]

(13)

\[
\text{CRB}(\sigma^2) = 2\sigma^2/mp
\]

(14)

where \(D(\theta) = \partial a(\theta)/\partial \theta \), an \((mp \times 5)\)-dimensional matrix.

IV. The Moving-Sensor Algorithm

We examine the localization problem in more detail (assuming that detection has already been performed), and suppose that there is a single moving sensor. In practice the sensor will move on a surface (that is, on the ground), but for the sake of generality we will retain 3-D notations. Vapor measurements cannot be taken continuously due to technological limitations, so we assume that there is a minimum interval \(\Delta T \) between consecutive measurements. The time needed for \(N \) measurements is therefore \(N \Delta T \). Let \(\Delta \bar{r} = [\Delta x, \Delta y, \Delta z]^T \) denote the vector of location estimation errors. A reasonable optimality criterion is to estimate the source location within a prescribed accuracy \(\epsilon \) at a minimum time, that is, to minimize \(N \) subject to the requirement \(||\Delta \bar{r}|| \leq \epsilon \). The underlying assumption is, of course, that \(\epsilon \) represents the error below which the source can be identified by other means (e.g., visually). Implementation of such a criterion is, however, very difficult, since the corresponding mathematical problem cannot be solved in closed form. We therefore propose the following approximation.

Suppose we have already taken \(n \) measurements at known sensor locations and instants. Thus, we can obtain an estimate \([\hat{x}_n, \hat{v}_n, \hat{z}_n]\) of the source coordinates, using the algorithm described in the previous section. The accuracy of \([\hat{x}_n, \hat{v}_n, \hat{z}_n]\) (i.e., their standard deviations) can be estimated from the Cramér–Rao lower bound, if we assume that the algorithm is statistically efficient (or a certain small multiple of the bound, if we allow for a certain relative efficiency). For the unknown values of \([\hat{x}_n, \hat{v}_n, \hat{z}_n]\) (which are needed in the CRB computation), we substitute the current estimates \([\hat{x}_n, \hat{v}_n, \hat{z}_n]\). Let \(\Delta \hat{r}(n, \Delta T) = [x(n, \Delta T), y(n, \Delta T), z(n, \Delta T)]^T \) be the coordinates of the sensor after the \(n \)th measurement, and let \(\Delta \bar{r}_{n+1} \) be the set of all points reachable by the sensor at time \((n + 1) \Delta T\), given the speed and maneuvering limitations and the geometrical constraints. Then choose a point \(\bar{r}(n + 1) \Delta T \)
In S_{n+1} as to minimize the CRB on the location errors given the measurements up to and including $n+1$, and move the sensor to that point in order to take the next measurement.

The rationale behind the above tactic is clear: The information in the next measurement depends on the sensor’s location while taking that measurement. Of all feasible locations, it makes sense to choose the one that would improve the estimation accuracy as much as possible. If this tactic is repeated at each step, we can hope to minimize the time required for reducing the estimation error to a prescribed level.

A typical shape of the set S_{n+1} is a sphere centered at $\mathbf{r}(n+1 \Delta T)$, whose radius is related to the maximum speed, acceleration, and deceleration (we assume that the vehicle has to stop in order to take the next measurement). Physical obstacles are to be excluded from this disk. The next point $\mathbf{r}(n+1 \Delta T)$ can then be found by searching over a grid on this sphere. At each grid point, the CRB can be computed by formula (12). This, however, may require an unreasonably large number of computations. We therefore propose an approximation: Compute the gradient of the CRB after $n+1$ measurements with respect to the prospective new point $[x((n+1)\Delta T), y((n+1)\Delta T), z((n+1)\Delta T)]$. In this computation, all previous points have already been determined, so they are fixed; also, the source location \mathbf{r} is replaced by its current estimate. Then proceed in the opposite direction of the gradient to the boundary of the sphere, or to the furthest feasible point along this direction, and declare this point as $\mathbf{r}(n+1 \Delta T)$. This procedure is terminated when the CRB becomes smaller than ϵ (or a small multiple thereof).

The gradient of the CRB is computed as follows. Let ξ denote any variable with respect to which we want to differentiate [in this case one of the coordinates of $\mathbf{r}(n+1 \Delta T)$]. Then we get from (12)

$$\frac{\partial}{\partial \xi} \text{CRB}(\theta) = \frac{\partial^2}{\partial \xi^2} \text{CRB}(\theta)$$

$$\times \left[\frac{\partial}{\partial \xi} \left(D^T(\theta)P_k(\theta)(\theta)D(\theta) \right) \right] \text{CRB}(\theta)$$

where

$$\frac{\partial}{\partial \xi} \left(D^T(\theta)P_k(\theta)(\theta)D(\theta) \right)$$

$$= \frac{\partial D^T(\theta)}{\partial \xi} P_k(\theta)(\theta)D(\theta) + D^T(\theta)P_k(\theta)(\theta) \frac{\partial D(\theta)}{\partial \xi}$$

$$- D^T(\theta)P_k(\theta)(\theta) \frac{\partial A(\theta)}{\partial \xi} \left[A^T(\theta)A(\theta) \right]^{-1} A^T(\theta)D(\theta)$$

$$- D^T(\theta)A(\theta)A^T(\theta)A(\theta) \left[A^T(\theta)A(\theta) \right]^{-1} \frac{\partial A^T(\theta)}{\partial \xi} P_k(\theta)(\theta)D(\theta).$$

We will omit the expressions for the individual derivatives of $D(\theta)$ and $A(\theta)$ since they are lengthy, but in principle it is straightforward to obtain from the explicit expressions (6) for the elements of $A(\theta)$. In our computer implementation of the algorithm, we obtained those derivatives using the symbolic mathematics capabilities of Mathematica.

Note that, in order to determine the direction of motion of the sensor, we only need a small part of the CRB matrix, namely the diagonal elements corresponding to the three location coordinates $[x_n, y_n, z_n]$. There are many ways to combine these elements to obtain a scalar criterion. Since, in general there is no reason to prefer one coordinate over the other, we have chosen to use the sum of the three elements. This sum is a measure of the square-magnitude of the location error vector.
An extension to the case of multiple moving sensors can be suggested as follows. All sensors transmit their locations and measurements to a central unit. Based on the CRB-gradient criterion, the central unit computes the next optimal location for each sensor and transmits these locations to the vehicles, which then proceed to their respective destinations for the next measurement. The implementation details are a straightforward extension of the basic CRB-gradient algorithm, and we will not elaborate on them here.

V. AN EXAMPLE

The following simulation example illustrates the behavior of the CRB-gradient algorithm. A vapor-emitting source is placed at coordinates \((-50, -50)\) in meters. Emission is assumed to have started 100 seconds prior to the beginning of the simulation. The source emission rate \(\mu\) is normalized to 1 Kg/s. The diffusivity \(\kappa\) is taken as 25 m\(^2\)/s. Bias of \(10^{-3}\) Kg/m\(^2\) and random error with standard deviation \(10^{-2}\) Kg/m\(^2\) are assumed to be present in the measurements. The sensor moves on a circle of radius 250 m, centered at \((0, 0)\), counterclockwise, starting at time zero. The vehicle's speed is equal to 5 m/s. Measurements are taken every 10 s.

At time \(t = 400\) s, detection is assumed to have occurred, and then the CRB-gradient algorithm begins, initially using the measurements accumulated during the first 400 seconds. After 19 more measurements (that is, 190 s), the CRB's of the \(\xi\) and \(\upsilon\) coordinates both get below 1 m, and then the simulation stops.

Fig. 1 shows the path travelled by the sensor, including the initial circle and the convergence path toward the source. Note how the moving sensor "sniffs around" the source, circling it while gradually decreasing the distance. This behavior is very intuitive; the circling serves the purpose of spatial diversity of the measurements, while decreasing the distance helps increase the measured concentration, thereby reducing the sensitivity to noise.

Fig. 2 shows the CRB's on the two coordinates (rather, the square-roots thereof, in meters) as a function of time, while Fig. 3 shows the corresponding location errors. The CRB's decay monotonically, as dictated by the algorithm. The actual errors decay as well, but not monotonically, since this is a single random simulation.

VI. CONCLUSION

We have examined the possible use of moving sensors for localizing vapor-emitting sources. A single moving sensor can fulfill the task of an array of stationary sensors and, furthermore, the sensor's path can be planned in real time so as to optimize localization according to a specified criterion. The optimality criterion proposed in this correspondence—motion opposite to the direction of the gradient of the CRB—approximately minimizes the time to reduce the location error to a prescribed level. The CRB-gradient approach is applicable in principle to other areas. It can be used whenever the sensors are movable and their motion times are on the same time scale as the measurement process (or faster).

REFERENCES

Noisy Input/Output System Identification Using Cumulants and the Steiglitz–McBride Algorithm

John M. M. Anderson and Georgios B. Giannakis

Abstract—We consider the problem of identifying a linear, time-invariant system from its noisy input/output data. The input and output are assumed to be non-Gaussian, while the input and output noises are assumed to be mutually correlated, colored, and Gaussian. Using third-order cross- and auto-cumulants, we extend the well-known Steiglitz–McBride identification method to cumulant domains, and show that it is consistent under a certain "third-order" persistence of excitation condition. By comparison, the Steiglitz–McBride method is not consistent when either input noise is present or when the output noise is colored. For an empirical assessment, we provide simulations that demonstrate the proposed method's usefulness.

I. INTRODUCTION

The Steiglitz–McBride (SM) method [6] is a well-known approach for input/output (I/O) system identification. Although the method has been successfully applied to both linear and nonlinear systems, it is limited by the requirement that the noise be white and only contaminate the output. It has been extended to handle correlated noise [5]; however, the noise statistics must be known, and the noise can only contaminate either the output or the input. Typically, the noise is colored and a priori knowledge of the noise statistics is unavailable; additionally, noise may be present at both the input and output.

Using the multilinear property of cumulants, we extend the SM algorithm to cumulant domains. More specifically, we develop a linear algorithm that attempts to minimize a cumulant output error

Manuscript received December 22, 1994; revised August 31, 1995. Part of the results in this paper were presented at the 25th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, November 1991. G. Giannakis was supported by ONR N00014-93-1-0485. The associate editor coordinating the review of this work and approving it for publication was Dr. Athina Petropulu.

J. M. M. Anderson was with the Department of Electrical Engineering at the University of Virginia, Charlottesville, VA 22903 USA. He is now with the Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611 USA (e-mail: anderson@ee.ufl.edu).

G. Giannakis is with the Department of Electrical Engineering, University of Virginia, Charlottesville, VA 22903 USA.

Publisher Item Identifier S 1053-587X/96/02383-3.