Comparison of Ultrasonic Thermometry Based on the Change in Backscattered Energy with MR Temperature Images

R. Martin Arthur¹, William L Straube², Michael Gach², Michael Altman² & Hong Chen²,³

¹Electrical & Systems Engineering, ²Radiation Oncology & ³Biomedical Engineering
Washington University in St. Louis

Supported by National Institute of Health grant R21-CA90531, R01-CA107558, by the Wilkinson Trust at Washington University, St. Louis and via a Philips Corporation Research Agreement
Thermal Therapy

- Applications include
 - Hyperthermia
 - Ablation
 - Drug release
 - Vascular modification
- Temperature Imaging
 - MRI (de facto standard)
 - Ultrasound (portable, inexpensive, high temporal resolution)

Hynynen, J. Magn. Res. 34, 2011
CBE: Change in Ultrasonic Backscattered Energy

Ultrasonic backscattered energy increases or decreases with temperature depending on scatterer type as shown in:
- Theoretical analyses
- Simulation of scatterer populations
- Measurements in 1D, 2D and 3D
- Monotonic to >60°C

0.300 ± 0.016 dB/°C

CBE thermal sensitivity over 20 1cc volumes from 8 specimens of turkey breast

Objective

- Produce CBE-based temperature images *in vitro* @ 30 sec intervals with MRI compatible heating source

- Compare to MR temperature images *in vitro* @ 30 sec intervals
Non-uniform Heating Fixture

Tissue Fixture For CBE TI

Tissue Fixture For MR TI
(CBE fixture without thermocouples & guides)
CBE Temperature Imaging Experiment

In vitro Experiments with Turkey Breast
Non-rigid 3D Motion Compensation

Motion in turkey breast over 20 minutes
Apparent Motion Between Images < 15 μm
CBE Temperature Imaging with during Non-uniform Heating in Turkey

Fixture

Thermocouple locations

~1 °C accuracy

Washington

2016 ICHO

AM Arthur

April 15, 2016
CBE Temperature Imaging with during Non-uniform Heating in Turkey

Estimated temperatures at the indicated thermocouples was tracked to within ~1°C.
MR Temperature Imaging Experiment

Preparation for hot-water heating

Hot-water tank with pump for delivery to tissue in MR room

Philips Ingenia 1.5T system

Tissue in fixture under sand bags with silicon tubes from hot-water

Drift correction for MR TI (Ari Partanen, Philips Corp)

Washington 2016 ICHO
MR Temperature Elevation Images in Turkey
Heated by 75°C Water in Central Tube

Parallel images (separated by 2 mm) after 1200 sec
MR Temperature Elevation over Time
Temperature Images during Non-uniform Heating of Different Turkey Specimens

CBE (short heating tube)

MR (long heating tube)

Turkey in air at room temperature

Turkey in water at room temperature

Washington University in St. Louis

2016 ICHO

RM Arthur

April 15, 2016
CBE Temperature Images during Non-uniform Heating in Gelatin Phantom

- Phantom in air at room temperature
- Thermocouples outside of the field of view
- CBE temperature within ~1°C of thermocouple readings
Summary & Conclusions

- Volumetric temperature distributions were estimated in turkey breast using
 - CBE ultrasonic temperature imaging
 - MR temperature imaging
- Both modalities are subject to motion artifact, but are accurate to about 1°C
- In this preliminary study both modalities had
 - Similar temperature elevations, but
 - Differences in heating patterns with distance from heat source
- Further studies comparing both are planned with temperature validation using fiber optics sensors